These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
903 related articles for article (PubMed ID: 25487951)
1. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Soong JL; Cotrufo MF Glob Chang Biol; 2015 Jun; 21(6):2321-33. PubMed ID: 25487951 [TBL] [Abstract][Full Text] [Related]
2. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Haddix ML; Paul EA; Cotrufo MF Glob Chang Biol; 2016 Jun; 22(6):2301-12. PubMed ID: 27142168 [TBL] [Abstract][Full Text] [Related]
3. High-frequency fire alters C : N : P stoichiometry in forest litter. Toberman H; Chen C; Lewis T; Elser JJ Glob Chang Biol; 2014 Jul; 20(7):2321-31. PubMed ID: 24132817 [TBL] [Abstract][Full Text] [Related]
4. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Cotrufo MF; Wallenstein MD; Boot CM; Denef K; Paul E Glob Chang Biol; 2013 Apr; 19(4):988-95. PubMed ID: 23504877 [TBL] [Abstract][Full Text] [Related]
5. Litter type control on soil C and N stabilization dynamics in a temperate forest. Hatton PJ; Castanha C; Torn MS; Bird JA Glob Chang Biol; 2015 Mar; 21(3):1358-67. PubMed ID: 25358112 [TBL] [Abstract][Full Text] [Related]
6. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Chen R; Senbayram M; Blagodatsky S; Myachina O; Dittert K; Lin X; Blagodatskaya E; Kuzyakov Y Glob Chang Biol; 2014 Jul; 20(7):2356-67. PubMed ID: 24273056 [TBL] [Abstract][Full Text] [Related]
7. Modeling the flow of 15N after a 15N pulse to study long-term N dynamics in a semiarid grassland. Dijkstra FA Ecology; 2009 Aug; 90(8):2171-82. PubMed ID: 19739379 [TBL] [Abstract][Full Text] [Related]
8. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Gill RA; Anderson LJ; Polley HW; Johnson HB; Jackson RB Ecology; 2006 Jan; 87(1):41-52. PubMed ID: 16634295 [TBL] [Abstract][Full Text] [Related]
9. Comparing chemistry and bioactivity of burned vs. decomposed plant litter: different pathways but same result? Bonanomi G; Incerti G; Abd El-Gawad AM; Cesarano G; Sarker TC; Saulino L; Lanzotti V; Saracino A; Rego FC; Mazzoleni S Ecology; 2018 Jan; 99(1):158-171. PubMed ID: 29065230 [TBL] [Abstract][Full Text] [Related]
10. The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Lajtha K; Bowden RD; Crow S; Fekete I; Kotroczó Z; Plante A; Simpson MJ; Nadelhoffer KJ Sci Total Environ; 2018 Nov; 640-641():1112-1120. PubMed ID: 30021276 [TBL] [Abstract][Full Text] [Related]
11. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems. Tamura M; Suseela V; Simpson M; Powell B; Tharayil N Glob Chang Biol; 2017 Oct; 23(10):4002-4018. PubMed ID: 28480539 [TBL] [Abstract][Full Text] [Related]
12. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum. Qiao N; Xu X; Hu Y; Blagodatskaya E; Liu Y; Schaefer D; Kuzyakov Y Sci Rep; 2016 Jan; 6():19865. PubMed ID: 26806914 [TBL] [Abstract][Full Text] [Related]
14. Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic. Hicks LC; Leizeaga A; Rousk K; Michelsen A; Rousk J Ecology; 2020 Sep; 101(9):e03094. PubMed ID: 32379897 [TBL] [Abstract][Full Text] [Related]
15. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands. Polley HW; Derner JD; Jackson RB; Gill RA; Procter AC; Fay PA Oecologia; 2015 Jun; 178(2):591-601. PubMed ID: 25604918 [TBL] [Abstract][Full Text] [Related]
16. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions. Griepentrog M; Eglinton TI; Hagedorn F; Schmidt MW; Wiesenberg GL Glob Chang Biol; 2015 Jan; 21(1):473-86. PubMed ID: 24953725 [TBL] [Abstract][Full Text] [Related]
17. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633 [TBL] [Abstract][Full Text] [Related]
18. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Waldrop MP; Firestone MK Oecologia; 2004 Jan; 138(2):275-84. PubMed ID: 14614618 [TBL] [Abstract][Full Text] [Related]
19. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Erhagen B; Öquist M; Sparrman T; Haei M; Ilstedt U; Hedenström M; Schleucher J; Nilsson MB Glob Chang Biol; 2013 Dec; 19(12):3858-71. PubMed ID: 23907960 [TBL] [Abstract][Full Text] [Related]
20. Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest. Wang JJ; Pisani O; Lin LH; Lun OOY; Bowden RD; Lajtha K; Simpson AJ; Simpson MJ Sci Total Environ; 2017 Dec; 607-608():865-875. PubMed ID: 28711848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]