These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 25488041)

  • 1. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.
    Yamada C; Kato S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2015 Jun; 119(6):678-82. PubMed ID: 25488041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.
    Zhuang L; Tang J; Wang Y; Hu M; Zhou S
    J Hazard Mater; 2015 Aug; 293():37-45. PubMed ID: 25827267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation.
    Baek G; Kim J; Cho K; Bae H; Lee C
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10355-66. PubMed ID: 26272096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Iron Oxides Promote Methanogenic Acetate Degradation by Microbial Communities in a High-Temperature Petroleum Reservoir.
    Kato S; Wada K; Kitagawa W; Mayumi D; Ikarashi M; Sone T; Asano K; Kamagata Y
    Microbes Environ; 2019 Mar; 34(1):95-98. PubMed ID: 30773516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations.
    Zhuang L; Ma J; Yu Z; Wang Y; Tang J
    Microb Biotechnol; 2018 Jul; 11(4):710-720. PubMed ID: 29896929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures.
    Tang J; Zhuang L; Ma J; Tang Z; Yu Z; Zhou S
    Appl Environ Microbiol; 2016 Oct; 82(19):5869-77. PubMed ID: 27451453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.
    Pan P; Hong B; Mbadinga SM; Wang LY; Liu JF; Yang SZ; Gu JD; Mu BZ
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):7053-7063. PubMed ID: 28730409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms.
    Xu H; Chang J; Wang H; Liu Y; Zhang X; Liang P; Huang X
    Sci Total Environ; 2019 Dec; 695():133876. PubMed ID: 31756846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats.
    Chen YT; Zeng Y; Wang HZ; Zheng D; Kamagata Y; Narihiro T; Nobu MK; Tang YQ
    Microb Ecol; 2020 Jul; 80(1):120-132. PubMed ID: 31982930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.
    Cruz Viggi C; Rossetti S; Fazi S; Paiano P; Majone M; Aulenta F
    Environ Sci Technol; 2014 Jul; 48(13):7536-43. PubMed ID: 24901501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals.
    Kato S; Hashimoto K; Watanabe K
    Environ Microbiol; 2012 Jul; 14(7):1646-54. PubMed ID: 22004041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.
    Zheng S; Wang B; Liu F; Wang O
    J Microbiol; 2017 Nov; 55(11):862-870. PubMed ID: 29076069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds.
    Tang Y; Li Y; Zhang M; Xiong P; Liu L; Bao Y; Zhao Z
    Environ Res; 2021 Mar; 194():110498. PubMed ID: 33220246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetite particles accelerate methanogenic degradation of highly concentrated acetic acid in anaerobic digestion process.
    Kim M; Jung S; Kang S; Rhie MN; Song M; Shin J; Shin SG; Lee J
    Environ Res; 2024 Aug; 255():119132. PubMed ID: 38735380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing.
    Zheng D; Wang HZ; Gou M; Nobu MK; Narihiro T; Hu B; Nie Y; Tang YQ
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8631-8645. PubMed ID: 31418053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil.
    Peng J; Wegner CE; Bei Q; Liu P; Liesack W
    Microbiome; 2018 Sep; 6(1):169. PubMed ID: 30231929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals.
    Kato S; Igarashi K
    Microbiologyopen; 2019 Mar; 8(3):e00647. PubMed ID: 29877051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens.
    Yamada C; Kato S; Kimura S; Ishii M; Igarashi Y
    FEMS Microbiol Ecol; 2014 Sep; 89(3):637-45. PubMed ID: 24920412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.