These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

713 related articles for article (PubMed ID: 25488047)

  • 1. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted learning in real-world comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Stat Med; 2014 Jun; 33(14):2480-520. PubMed ID: 24535915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling.
    Neugebauer R; Fireman B; Roy JA; Raebel MA; Nichols GA; O'Connor PJ
    J Clin Epidemiol; 2013 Aug; 66(8 Suppl):S99-109. PubMed ID: 23849160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments.
    Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S
    Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Super Learner with high-dimensional propensity score to improve confounding adjustment: A real-world application in chronic lymphocytic leukemia.
    Dhopeshwarkar N; Yang W; Hennessy S; Rhodes JM; Cuker A; Leonard CE
    Pharmacoepidemiol Drug Saf; 2024 Jan; 33(1):e5678. PubMed ID: 37609668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Super Learner Prediction Modeling to Improve High-dimensional Propensity Score Estimation.
    Wyss R; Schneeweiss S; van der Laan M; Lendle SD; Ju C; Franklin JM
    Epidemiology; 2018 Jan; 29(1):96-106. PubMed ID: 28991001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable Selection for Confounding Adjustment in High-dimensional Covariate Spaces When Analyzing Healthcare Databases.
    Schneeweiss S; Eddings W; Glynn RJ; Patorno E; Rassen J; Franklin JM
    Epidemiology; 2017 Mar; 28(2):237-248. PubMed ID: 27779497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of the high-dimensional propensity score in adjusting for unmeasured confounders.
    Guertin JR; Rahme E; LeLorier J
    Eur J Clin Pharmacol; 2016 Dec; 72(12):1497-1505. PubMed ID: 27578249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases.
    Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR
    Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the high-dimensional propensity score for use with administrative data with propensity scores derived from high-quality clinical data.
    Austin PC; Wu CF; Lee DS; Tu JV
    Stat Methods Med Res; 2020 Feb; 29(2):568-588. PubMed ID: 30975044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating large-scale propensity score performance through real-world and synthetic data experiments.
    Tian Y; Schuemie MJ; Suchard MA
    Int J Epidemiol; 2018 Dec; 47(6):2005-2014. PubMed ID: 29939268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodological review of the high-dimensional propensity score in comparative-effectiveness and safety-of-interventions research finds incomplete reporting relative to algorithm development and robustness.
    Martin GL; Petri C; Rozenberg J; Simon N; Hajage D; Kirchgesner J; Tubach F; Létinier L; Dechartres A
    J Clin Epidemiol; 2024 May; 169():111305. PubMed ID: 38417583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
    Schmidt AF; Klungel OH; Groenwold RH;
    Epidemiology; 2016 Jan; 27(1):133-42. PubMed ID: 26436519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Head to head comparison of the propensity score and the high-dimensional propensity score matching methods.
    Guertin JR; Rahme E; Dormuth CR; LeLorier J
    BMC Med Res Methodol; 2016 Feb; 16():22. PubMed ID: 26891796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):131-55. PubMed ID: 27227720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric and nonparametric propensity score estimation in multilevel observational studies.
    Salditt M; Nestler S
    Stat Med; 2023 Oct; 42(23):4147-4176. PubMed ID: 37532119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records.
    Low YS; Gallego B; Shah NH
    J Comp Eff Res; 2016 Mar; 5(2):179-92. PubMed ID: 26634383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases.
    Wendling T; Jung K; Callahan A; Schuler A; Shah NH; Gallego B
    Stat Med; 2018 Oct; 37(23):3309-3324. PubMed ID: 29862536
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 36.