These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25488205)

  • 1. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.
    Artetxe A; Beristain A; Kabongo L
    Stud Health Technol Inform; 2014; 207():1-10. PubMed ID: 25488205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Objective diagnosis of ADHD using IMUs.
    O'Mahony N; Florentino-Liano B; Carballo JJ; Baca-García E; Rodríguez AA
    Med Eng Phys; 2014 Jul; 36(7):922-6. PubMed ID: 24657100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerometer-based goniometer for smartphone and manual measurement on photographs: do they agree?
    Ferriero G; Vercelli S; Sartorio F; Foti C
    Biomed Tech (Berl); 2014 Dec; 59(6):549-50. PubMed ID: 24992014
    [No Abstract]   [Full Text] [Related]  

  • 5. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic classification of the sub-techniques (gears) used in cross-country ski skating employing a mobile phone.
    Stöggl T; Holst A; Jonasson A; Andersson E; Wunsch T; Norström C; Holmberg HC
    Sensors (Basel); 2014 Oct; 14(11):20589-601. PubMed ID: 25365459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.
    Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S
    Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.
    Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H
    Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term activity recognition from wristwatch accelerometer data.
    Garcia-Ceja E; Brena RF; Carrasco-Jimenez JC; Garrido L
    Sensors (Basel); 2014 Nov; 14(12):22500-24. PubMed ID: 25436652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of a Smartphone-Based Fall Detection Application on Different Phones Worn on a Belt or in a Trouser Pocket.
    Vermeulen J; Willard S; Aguiar B; De Witte LP
    Assist Technol; 2015; 27(1):18-23. PubMed ID: 26132221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ActimedARM - design of a wearable system to monitor daily actimetry.
    Noury N; Perriot B; Collet J; Grenier E; Cerny M; Massot B; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1851-4. PubMed ID: 24110071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis.
    Charvátová H; Procházka A; Vyšata O
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Complex Activity Representation and Recognition Using Topic Model and Classifier Level Fusion.
    Liangying Peng ; Ling Chen ; Xiaojie Wu ; Haodong Guo ; Gencai Chen
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1369-1379. PubMed ID: 28113223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A smart phone-based pocket fall accident detection, positioning, and rescue system.
    Kau LJ; Chen CS
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):44-56. PubMed ID: 25486656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.
    Ghose S; Mitra J; Karunanithi M; Dowling J
    Stud Health Technol Inform; 2015; 214():62-7. PubMed ID: 26210419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone-based recognition of states and state changes in bipolar disorder patients.
    Grünerbl A; Muaremi A; Osmani V; Bahle G; Ohler S; Tröster G; Mayora O; Haring C; Lukowicz P
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):140-8. PubMed ID: 25073181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.