These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25488209)

  • 1. Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.
    Olivares A; Górriz JM; Ramírez J; Olivares G
    Stud Health Technol Inform; 2014; 207():37-46. PubMed ID: 25488209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of traversed distance in level walking using a single inertial measurement unit attached to the waist.
    Kose A; Cereatti A; Della Croce U
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1125-8. PubMed ID: 22254512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors.
    Duong PD; Suh YS
    Sensors (Basel); 2015 Jul; 15(7):15888-902. PubMed ID: 26151205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters.
    Olivares A; Górriz JM; Ramírez J; Olivares G
    Comput Biol Med; 2016 May; 72():229-38. PubMed ID: 26337122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drift removal for improving the accuracy of gait parameters using wearable sensor systems.
    Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S
    Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial sensor-based smoother for gait analysis.
    Suh YS
    Sensors (Basel); 2014 Dec; 14(12):24338-57. PubMed ID: 25526359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
    Ligorio G; Sabatini AM
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2033-43. PubMed ID: 25775483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System.
    Ren M; Pan K; Liu Y; Guo H; Zhang X; Wang P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis.
    Köse A; Cereatti A; Della Croce U
    J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors.
    Patterson MR; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4509-12. PubMed ID: 23366930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambulatory Estimation of Relative Foot Positions by Fusing Ultrasound and Inertial Sensor Data.
    Weenk D; Roetenberg D; van Beijnum BJ; Hermens HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):817-26. PubMed ID: 25248191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module.
    Meng X; Zhang ZQ; Wu JK; Wong WC; Yu H
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):892-9. PubMed ID: 24557690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of physical constraint condition by analyzing walking motions.
    Kurita Y; Kuraki D; Ueda E; Matsumoto Y; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5196-9. PubMed ID: 19163888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.