These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25488209)

  • 21. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton.
    Yang C; Wei Q; Wu X; Ma Z; Chen Q; Wang X; Wang H; Fan W
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters.
    Ferrari A; Ginis P; Hardegger M; Casamassima F; Rocchi L; Chiari L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):764-73. PubMed ID: 26259246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved Single Inertial-Sensor-Based Attitude Estimation during Walking Using Velocity-Aided Observation.
    Dang DC; Suh YS
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A kinematic method for computing the motion of the body centre-of-mass (CoM) during walking: a Bayesian approach.
    Martínez F; Gómez F; Romero E
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):561-72. PubMed ID: 21630165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inertial sensor-based two feet motion tracking for gait analysis.
    Hung TN; Suh YS
    Sensors (Basel); 2013 Apr; 13(5):5614-29. PubMed ID: 23628759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Walking Distance Estimation Using Walking Canes with Inertial Sensors.
    Dang DC; Suh YS
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic activity classification based on automatic adaptation of postural orientation.
    Song SK; Jang J; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6175-8. PubMed ID: 19964894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real Time Estimation of the Pose of a Lower Limb Prosthesis from a Single Shank Mounted IMU.
    Duraffourg C; Bonnet X; Dauriac B; Pillet H
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation.
    Schepers HM; Roetenberg D; Veltink PH
    Med Biol Eng Comput; 2010 Jan; 48(1):27-37. PubMed ID: 20016949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter.
    Nez A; Fradet L; Marin F; Monnet T; Lacouture P
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compensatory trunk movements in patients with hip osteoarthritis: accuracy and reproducibility of a body-fixed sensor-based assessment.
    Reininga IH; Stevens M; Wagenmakers R; Boerboom AL; Groothoff JW; Bulstra SK; Zijlstra W
    Am J Phys Med Rehabil; 2011 Aug; 90(8):681-7. PubMed ID: 21389843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait cycle spectrogram analysis using a torso-attached inertial sensor.
    Yuwono M; Su SW; Moulton BD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6539-42. PubMed ID: 23367427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy and repeatability of parameter estimation methods from ambulatory data for the wrist joint.
    Esmaeili M; Moussouni S; Widjaja F; Gamage K; Campolo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1292-6. PubMed ID: 22254553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Objective real-time assessment of walking and turning in elderly adults.
    Skrba Z; O'Mullane B; Greene BR; Scanaill CN; Fan CW; Quigley A; Nixon P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():807-10. PubMed ID: 19964488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An EKF-based approach for estimating leg stiffness during walking.
    Ochoa-Diaz C; Menegaz HM; Bó AP; Borges GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7226-8. PubMed ID: 24111412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.
    Zihajehzadeh S; Yoon PK; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3141-4. PubMed ID: 26736958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease.
    Mariani B; Jiménez MC; Vingerhoets FJ; Aminian K
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):155-8. PubMed ID: 23268531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.