BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25488252)

  • 1. Separation of peptides and intact proteins by electrostatic repulsion reversed phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2014 Dec; 1374():112-121. PubMed ID: 25488252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the surface concentration of fixed charges in C
    Gritti F; Guiochon G
    J Chromatogr A; 2014 Dec; 1372C():42-54. PubMed ID: 25459649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption behaviors of neutral and ionizable compounds on hybrid stationary phases in the absence (BEH-C18) and the presence (CSH-C18) of immobile surface charges.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Mar; 1282():58-71. PubMed ID: 23422897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the pH and the ionic strength on overloaded band profiles of weak bases onto neutral and charged surface hybrid stationary phases in reversed-phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Mar; 1282():113-26. PubMed ID: 23415137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption behavior of the three species of the biprotic peptide Phe-Ala onto an end-capped C18-bonded organic/inorganic hybrid stationary phase.
    Gritti F; Guiochon G
    Anal Chem; 2009 Dec; 81(24):9871-84. PubMed ID: 19928839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography.
    Åsberg D; Langborg Weinmann A; Leek T; Lewis RJ; Klarqvist M; Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T
    J Chromatogr A; 2017 May; 1496():80-91. PubMed ID: 28363419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the ionic strength on the adsorption process of an ionic surfactant onto a C18-bonded charged surface hybrid stationary phase at low pH.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Mar; 1282():46-57. PubMed ID: 23419351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and comparison of mixed-mode and reversed-phase columns; interaction abilities and applicability for peptide separation.
    Kadlecová Z; Kozlík P; Tesařová E; Gilar M; Kalíková K
    J Chromatogr A; 2021 Jul; 1648():462182. PubMed ID: 33979757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overloading study of basic compounds with a positively charged C18 column in liquid chromatography.
    Wang C; Guo Z; Long Z; Zhang X; Liang X
    J Chromatogr A; 2013 Mar; 1281():60-6. PubMed ID: 23411141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic interaction chromatography: A promising alternative to reversed-phase liquid chromatography systems for the purification of small protonated bases.
    Gritti F; Guiochon G
    J Sep Sci; 2015 May; 38(10):1633-41. PubMed ID: 25755153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: a thermodynamic interpretation.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Jan; 1216(1):63-78. PubMed ID: 19054520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical origin of peak tailing on C18-bonded silica in reversed-phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2004 Feb; 1028(1):75-88. PubMed ID: 14969283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention mechanism of peptides on a stationary phase embedded with a quaternary ammonium group: a liquid chromatography study.
    Abbood A; Smadja C; Herrenknecht C; Alahmad Y; Tchapla A; Taverna M
    J Chromatogr A; 2009 Apr; 1216(15):3244-51. PubMed ID: 19268297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions.
    Samuelsson J; Eiriksson FF; Åsberg D; Thorsteinsdóttir M; Fornstedt T
    J Chromatogr A; 2019 Aug; 1598():92-100. PubMed ID: 30961963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the pH dependent retention and competitive adsorption of charged and ionizable solutes in mixed-mode and reversed-phase liquid chromatography.
    Haseeb A; Fernandes MX; Samuelsson J
    J Chromatogr A; 2024 Jun; 1730():465058. PubMed ID: 38876077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous measurement of (W)(S)pH and overloaded band profiles of small peptides when insufficiently buffered mobile phases are used in preparative liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Dec; 1216(51):8874-82. PubMed ID: 19896135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of cannabinoids on three different mixed-mode columns containing carbon/nanodiamond/amine-polymer superficially porous particles.
    Hung CH; Zukowski J; Jensen DS; Miles AJ; Sulak C; Dadson AE; Linford MR
    J Sep Sci; 2015 Sep; 38(17):2968-74. PubMed ID: 26075936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Nonlinear Adsorption Isotherms in Gradient Elution RP-LC of Peptides in the Presence of an Adsorbing Additive.
    Åsberg D; Leśko M; Leek T; Samuelsson J; Kaczmarski K; Fornstedt T
    Chromatographia; 2017; 80(6):961-966. PubMed ID: 28725083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation into reversed-phase chromatography peptide separation systems Part IV: Characterisation of mobile phase selectivity differences.
    Field JK; Euerby MR; Haselmann KF; Petersson P
    J Chromatogr A; 2021 Mar; 1641():461986. PubMed ID: 33631703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.