These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25488289)

  • 1. Role of phosphoproteomics in the development of personalized cancer therapies.
    Cutillas PR
    Proteomics Clin Appl; 2015 Apr; 9(3-4):383-95. PubMed ID: 25488289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine.
    Wu X; Xing X; Dowlut D; Zeng Y; Liu J; Liu X
    J Proteomics; 2019 Jan; 191():68-79. PubMed ID: 29621648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.
    Labots M; van der Mijn JC; Beekhof R; Piersma SR; de Goeij-de Haas RR; Pham TV; Knol JC; Dekker H; van Grieken NCT; Verheul HMW; Jiménez CR
    J Proteomics; 2017 Jun; 162():99-107. PubMed ID: 28442448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells.
    Wirbel J; Cutillas P; Saez-Rodriguez J
    Methods Mol Biol; 2018; 1711():103-132. PubMed ID: 29344887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications.
    Iliuk AB; Arrington JV; Tao WA
    Electrophoresis; 2014 Dec; 35(24):3430-40. PubMed ID: 24890697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomics in cancer.
    Harsha HC; Pandey A
    Mol Oncol; 2010 Dec; 4(6):482-95. PubMed ID: 20937571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances and challenges in plant phosphoproteomics.
    Silva-Sanchez C; Li H; Chen S
    Proteomics; 2015 Mar; 15(5-6):1127-41. PubMed ID: 25429768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics.
    Osinalde N; Aloria K; Omaetxebarria MJ; Kratchmarova I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():29-38. PubMed ID: 28441545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in phosphoproteomics and its application to COPD.
    Zeng X; Lan Y; Xiao J; Hu L; Tan L; Liang M; Wang X; Lu S; Peng T; Long F
    Expert Rev Proteomics; 2022; 19(7-12):311-324. PubMed ID: 36730079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of Clinical Phosphoproteomics and Proteomics for Personalized Medicine.
    Casado P; Hijazi M; Gerdes H; Cutillas PR
    Methods Mol Biol; 2022; 2420():87-106. PubMed ID: 34905168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic.
    Jünger MA; Aebersold R
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):83-112. PubMed ID: 24902836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of conventional quantitative and phospho-proteomics reveals new elements in activated Jurkat T-cell receptor pathway maintenance.
    Jouy F; Müller SA; Wagner J; Otto W; von Bergen M; Tomm JM
    Proteomics; 2015 Jan; 15(1):25-33. PubMed ID: 25348772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteomics and cancer research.
    Ashman K; Villar EL
    Clin Transl Oncol; 2009 Jun; 11(6):356-62. PubMed ID: 19531450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.
    van der Mijn JC; Labots M; Piersma SR; Pham TV; Knol JC; Broxterman HJ; Verheul HM; Jiménez CR
    J Proteomics; 2015 Sep; 127(Pt B):259-63. PubMed ID: 25890253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases.
    Beekhof R; van Alphen C; Henneman AA; Knol JC; Pham TV; Rolfs F; Labots M; Henneberry E; Le Large TY; de Haas RR; Piersma SR; Vurchio V; Bertotti A; Trusolino L; Verheul HM; Jimenez CR
    Mol Syst Biol; 2019 Apr; 15(4):e8250. PubMed ID: 30979792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2012 ASMS Fall Workshop: mass spectrometry-based phosphorylation analysis and phosphoproteomics.
    Tao WA; Coon J
    J Am Soc Mass Spectrom; 2013 Mar; 24(3):464-5. PubMed ID: 23381688
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.