These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25488402)

  • 1. Modulation of HIV protease flexibility by the T80N mutation.
    Zhou H; Li S; Badger J; Nalivaika E; Cai Y; Foulkes-Murzycki J; Schiffer C; Makowski L
    Proteins; 2015 Nov; 83(11):1929-39. PubMed ID: 25488402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of invariant Thr80 in human immunodeficiency virus type 1 protease structure, function, and viral infectivity.
    Foulkes JE; Prabu-Jeyabalan M; Cooper D; Henderson GJ; Harris J; Swanstrom R; Schiffer CA
    J Virol; 2006 Jul; 80(14):6906-16. PubMed ID: 16809296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease.
    Mittal S; Cai Y; Nalam MN; Bolon DN; Schiffer CA
    J Am Chem Soc; 2012 Mar; 134(9):4163-8. PubMed ID: 22295904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.
    Braz AS; Tufanetto P; Perahia D; Scott LP
    Proteins; 2012 Dec; 80(12):2680-91. PubMed ID: 22821809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the activity of HIV-1 protease through antibody binding and mutations probed by molecular dynamics simulations.
    Badaya A; Sasidhar YU
    Sci Rep; 2020 Mar; 10(1):5501. PubMed ID: 32218488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Determinants of Epistasis in HIV-1 Protease: Elucidating the Interdependence of L89V and L90M Mutations in Resistance.
    Henes M; Kosovrasti K; Lockbaum GJ; Leidner F; Nachum GS; Nalivaika EA; Bolon DNA; Kurt Yilmaz N; Schiffer CA; Whitfield TW
    Biochemistry; 2019 Sep; 58(35):3711-3726. PubMed ID: 31386353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A poke in the eye: inhibiting HIV-1 protease through its flap-recognition pocket.
    Damm KL; Ung PM; Quintero JJ; Gestwicki JE; Carlson HA
    Biopolymers; 2008 Aug; 89(8):643-52. PubMed ID: 18381626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y
    J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution.
    Ishima R; Louis JM; Torchia DA
    J Mol Biol; 2001 Jan; 305(3):515-21. PubMed ID: 11152609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations.
    Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S
    J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance.
    Scott WR; Schiffer CA
    Structure; 2000 Dec; 8(12):1259-65. PubMed ID: 11188690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting X-ray solution scattering from flexible macromolecules.
    Zhou H; Guterres H; Mattos C; Makowski L
    Protein Sci; 2018 Dec; 27(12):2023-2036. PubMed ID: 30230663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly drug-resistant HIV-1 protease reveals decreased intra-subunit interactions due to clusters of mutations.
    Kneller DW; Agniswamy J; Harrison RW; Weber IT
    FEBS J; 2020 Aug; 287(15):3235-3254. PubMed ID: 31920003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations.
    Freedberg DI; Ishima R; Jacob J; Wang YX; Kustanovich I; Louis JM; Torchia DA
    Protein Sci; 2002 Feb; 11(2):221-32. PubMed ID: 11790832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease.
    Alvizo O; Mittal S; Mayo SL; Schiffer CA
    Protein Sci; 2012 Jul; 21(7):1029-41. PubMed ID: 22549928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray solution scattering studies of the structural diversity intrinsic to protein ensembles.
    Makowski L; Gore D; Mandava S; Minh D; Park S; Rodi DJ; Fischetti RF
    Biopolymers; 2011 Aug; 95(8):531-42. PubMed ID: 21462170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes.
    Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT
    Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.