These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25488769)

  • 21. Learning viewpoint invariant object representations using a temporal coherence principle.
    Einhäuser W; Hipp J; Eggert J; Körner E; König P
    Biol Cybern; 2005 Jul; 93(1):79-90. PubMed ID: 16021516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning invariant object recognition in the visual system with continuous transformations.
    Stringer SM; Perry G; Rolls ET; Proske JH
    Biol Cybern; 2006 Feb; 94(2):128-42. PubMed ID: 16369795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Face processing in different brain areas, and critical band masking.
    Rolls ET
    J Neuropsychol; 2008 Sep; 2(2):325-60. PubMed ID: 19824174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Innate visual learning through spontaneous activity patterns.
    Albert MV; Schnabel A; Field DJ
    PLoS Comput Biol; 2008 Aug; 4(8):e1000137. PubMed ID: 18670593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Face identification using one spike per neuron: resistance to image degradations.
    Delorme A; Thorpe SJ
    Neural Netw; 2001; 14(6-7):795-803. PubMed ID: 11665771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multivariate Pattern Analysis Reveals Category-Related Organization of Semantic Representations in Anterior Temporal Cortex.
    Malone PS; Glezer LS; Kim J; Jiang X; Riesenhuber M
    J Neurosci; 2016 Sep; 36(39):10089-96. PubMed ID: 27683905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Models of object recognition.
    Riesenhuber M; Poggio T
    Nat Neurosci; 2000 Nov; 3 Suppl():1199-204. PubMed ID: 11127838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paired Stimulation for Spike-Timing-Dependent Plasticity in Primate Sensorimotor Cortex.
    Seeman SC; Mogen BJ; Fetz EE; Perlmutter SI
    J Neurosci; 2017 Feb; 37(7):1935-1949. PubMed ID: 28093479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal, unsupervised learning in invariant object recognition.
    Wallis G; Baddeley R
    Neural Comput; 1997 May; 9(4):883-94. PubMed ID: 11561573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slowness: an objective for spike-timing-dependent plasticity?
    Sprekeler H; Michaelis C; Wiskott L
    PLoS Comput Biol; 2007 Jun; 3(6):e112. PubMed ID: 17604445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of homeostasis in learning sparse representations.
    Perrinet LU
    Neural Comput; 2010 Jul; 22(7):1812-36. PubMed ID: 20235818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear and higher-order approaches to the encoding of natural scenes.
    Zetzsche C; Nuding U
    Network; 2005; 16(2-3):191-221. PubMed ID: 16411496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.