These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 25488835)
1. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas. Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835 [TBL] [Abstract][Full Text] [Related]
2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
3. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. Zorić I; Zäch M; Kasemo B; Langhammer C ACS Nano; 2011 Apr; 5(4):2535-46. PubMed ID: 21438568 [TBL] [Abstract][Full Text] [Related]
4. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724 [TBL] [Abstract][Full Text] [Related]
5. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. Tabor C; Murali R; Mahmoud M; El-Sayed MA J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688 [TBL] [Abstract][Full Text] [Related]
6. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
7. Multipole plasmon resonances in self-assembled metal hollow-nanospheres. Yin J; Zang Y; Xu B; Li S; Kang J; Fang Y; Wu Z; Li J Nanoscale; 2014 Apr; 6(8):3934-40. PubMed ID: 24162844 [TBL] [Abstract][Full Text] [Related]
8. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range. Drozdowicz-Tomsia K; Baltar HT; Goldys EM Langmuir; 2012 Jun; 28(24):9071-81. PubMed ID: 22439753 [TBL] [Abstract][Full Text] [Related]
9. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime. Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706 [TBL] [Abstract][Full Text] [Related]
10. Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding. Grillet N; Manchon D; Bertorelle F; Bonnet C; Broyer M; Cottancin E; Lermé J; Hillenkamp M; Pellarin M ACS Nano; 2011 Dec; 5(12):9450-62. PubMed ID: 22087471 [TBL] [Abstract][Full Text] [Related]
11. New hybridization coupling mechanism and enhanced sensitivity in a Cu Cao P; Liang M; Wu Y; Li Y; Cheng L Nanotechnology; 2020 Sep; 31(36):365501. PubMed ID: 32443000 [TBL] [Abstract][Full Text] [Related]
12. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH; You MH; Kim GH; Nam JM Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930 [TBL] [Abstract][Full Text] [Related]
13. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. Gerislioglu B; Dong L; Ahmadivand A; Hu H; Nordlander P; Halas NJ Nano Lett; 2020 Mar; 20(3):2087-2093. PubMed ID: 31990568 [TBL] [Abstract][Full Text] [Related]
15. Localized surface plasmon resonance spectroscopy and sensing. Willets KA; Van Duyne RP Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281 [TBL] [Abstract][Full Text] [Related]
16. Plasmon response evaluation based on image-derived arbitrary nanostructures. Trautmann S; Richard-Lacroix M; Dathe A; Schneidewind H; Dellith J; Fritzsche W; Deckert V Nanoscale; 2018 May; 10(21):9830-9839. PubMed ID: 29774907 [TBL] [Abstract][Full Text] [Related]
17. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. Cha H; Yoon JH; Yoon S ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844 [TBL] [Abstract][Full Text] [Related]
18. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Lin HY; Huang CH; Chang CH; Lan YC; Chui HC Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835 [TBL] [Abstract][Full Text] [Related]
19. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes. El-Saeed AH; Allam NK Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979 [TBL] [Abstract][Full Text] [Related]