BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25489052)

  • 1. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects.
    Myklebust LM; Van Damme P; Støve SI; Dörfel MJ; Abboud A; Kalvik TV; Grauffel C; Jonckheere V; Wu Y; Swensen J; Kaasa H; Liszczak G; Marmorstein R; Reuter N; Lyon GJ; Gevaert K; Arnesen T
    Hum Mol Genet; 2015 Apr; 24(7):1956-76. PubMed ID: 25489052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.
    Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Mechanism of Acetylation by the N-Terminal Dual Enzyme NatA/Naa50 Complex.
    Deng S; Magin RS; Wei X; Pan B; Petersson EJ; Marmorstein R
    Structure; 2019 Jul; 27(7):1057-1070.e4. PubMed ID: 31155310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and genomic characterization of a yeast model for Ogden syndrome.
    Dörfel MJ; Fang H; Crain J; Klingener M; Weiser J; Lyon GJ
    Yeast; 2017 Jan; 34(1):19-37. PubMed ID: 27668839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies.
    Cheng H; Dharmadhikari AV; Varland S; Ma N; Domingo D; Kleyner R; Rope AF; Yoon M; Stray-Pedersen A; Posey JE; Crews SR; Eldomery MK; Akdemir ZC; Lewis AM; Sutton VR; Rosenfeld JA; Conboy E; Agre K; Xia F; Walkiewicz M; Longoni M; High FA; van Slegtenhorst MA; Mancini GMS; Finnila CR; van Haeringen A; den Hollander N; Ruivenkamp C; Naidu S; Mahida S; Palmer EE; Murray L; Lim D; Jayakar P; Parker MJ; Giusto S; Stracuzzi E; Romano C; Beighley JS; Bernier RA; Küry S; Nizon M; Corbett MA; Shaw M; Gardner A; Barnett C; Armstrong R; Kassahn KS; Van Dijck A; Vandeweyer G; Kleefstra T; Schieving J; Jongmans MJ; de Vries BBA; Pfundt R; Kerr B; Rojas SK; Boycott KM; Person R; Willaert R; Eichler EE; Kooy RF; Yang Y; Wu JC; Lupski JR; Arnesen T; Cooper GM; Chung WK; Gecz J; Stessman HAF; Meng L; Lyon GJ
    Am J Hum Genet; 2018 May; 102(5):985-994. PubMed ID: 29656860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates.
    Van Damme P
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639033
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    McTiernan N; Darbakk C; Ree R; Arnesen T
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biological functions of Naa10 - From amino-terminal acetylation to human disease.
    Dörfel MJ; Lyon GJ
    Gene; 2015 Aug; 567(2):103-31. PubMed ID: 25987439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel NAA10 p.(R83H) variant with impaired acetyltransferase activity identified in two boys with ID and microcephaly.
    Ree R; Geithus AS; Tørring PM; Sørensen KP; Damkjær M; ; Lynch SA; Arnesen T
    BMC Med Genet; 2019 Jun; 20(1):101. PubMed ID: 31174490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confirmation of Ogden syndrome as an X-linked recessive fatal disorder due to a recurrent NAA10 variant and review of the literature.
    Gogoll L; Steindl K; Joset P; Zweier M; Baumer A; Gerth-Kahlert C; Tutschek B; Rauch A
    Am J Med Genet A; 2021 Aug; 185(8):2546-2560. PubMed ID: 34075687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAA50 Is an Enzymatically Active
    Armbruster L; Linster E; Boyer JB; Brünje A; Eirich J; Stephan I; Bienvenut WV; Weidenhausen J; Meinnel T; Hell R; Sinning I; Finkemeier I; Giglione C; Wirtz M
    Plant Physiol; 2020 Aug; 183(4):1502-1516. PubMed ID: 32461302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation.
    Arnesen T; Starheim KK; Van Damme P; Evjenth R; Dinh H; Betts MJ; Ryningen A; Vandekerckhove J; Gevaert K; Anderson D
    Mol Cell Biol; 2010 Apr; 30(8):1898-909. PubMed ID: 20154145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa16p-hNaa10p (hNat2-hArd1).
    Arnesen T; Gromyko D; Kagabo D; Betts MJ; Starheim KK; Varhaug JE; Anderson D; Lillehaug JR
    BMC Biochem; 2009 May; 10():15. PubMed ID: 19480662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae.
    Varland S; Arnesen T
    BMC Res Notes; 2018 Jun; 11(1):404. PubMed ID: 29929531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases.
    Aksnes H; Drazic A; Marie M; Arnesen T
    Trends Biochem Sci; 2016 Sep; 41(9):746-760. PubMed ID: 27498224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment.
    Casey JP; Støve SI; McGorrian C; Galvin J; Blenski M; Dunne A; Ennis S; Brett F; King MD; Arnesen T; Lynch SA
    Sci Rep; 2015 Nov; 5():16022. PubMed ID: 26522270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of HypK regulating N-terminal acetylation by the NatA complex.
    Weyer FA; Gumiero A; Lapouge K; Bange G; Kopp J; Sinning I
    Nat Commun; 2017 Jun; 8():15726. PubMed ID: 28585574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
    Liszczak G; Marmorstein R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK.
    Deng S; McTiernan N; Wei X; Arnesen T; Marmorstein R
    Nat Commun; 2020 Feb; 11(1):818. PubMed ID: 32042062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.