These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25489293)

  • 1. Fabrication, characterization, and thermal property evaluation of silver nanofluids.
    Noroozi M; Radiman S; Zakaria A; Soltaninejad S
    Nanoscale Res Lett; 2014; 9(1):645. PubMed ID: 25489293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes.
    López-Muñoz GA; Balderas-López JA; Ortega-Lopez J; Pescador-Rojas JA; Salazar JS
    Nanoscale Res Lett; 2012 Dec; 7(1):667. PubMed ID: 23216772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation.
    Agresti F; Barison S; Battiston S; Pagura C; Colla L; Fedele L; Fabrizio M
    Nanotechnology; 2013 Sep; 24(36):365601. PubMed ID: 23942258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Wavelength Measurement of Nanofluid in an Optical-Fiber Thermal Wave Cavity Technique to Determine the Thermal Diffusivity.
    Noroozi M; Mohammadi B; Radiman S; Zakaria A
    ScientificWorldJournal; 2018; 2018():9458952. PubMed ID: 29686589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations.
    López-Muñoz GA; Pescador-Rojas JA; Ortega-Lopez J; Salazar JS; Balderas-López JA
    Nanoscale Res Lett; 2012 Jul; 7(1):423. PubMed ID: 22846704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation on the thermal effusivity of nanofluids Containing Al(2)O(3) and CuO nanoparticles.
    Noroozi M; Zakaria A; Moksin MM; Wahab ZA
    Int J Mol Sci; 2012; 13(8):10350-10358. PubMed ID: 22949865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal Effect of Modulating Laser Irradiation on the Thermal Diffusivity of Al
    Noroozi M; Mohammadi B; Radiman S; Zakaria A; Azis RS
    Nanoscale Res Lett; 2019 Jan; 14(1):37. PubMed ID: 30689064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental.
    Ali FM; Yunus WM; Moksin MM; Talib ZA
    Rev Sci Instrum; 2010 Jul; 81(7):074901. PubMed ID: 20687751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation.
    Navaladian S; Viswanathan B; Varadarajan TK; Viswanath RP
    Nanotechnology; 2008 Jan; 19(4):045603. PubMed ID: 21817509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent.
    Noroozi M; Zakaria A; Moksin MM; Wahab ZA; Abedini A
    Int J Mol Sci; 2012; 13(7):8086-8096. PubMed ID: 22942691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal diffusivity of nanofluids containing Au/Pd bimetallic nanoparticles of different compositions.
    Sánchez-Ramírez JF; Jiménez Pérez JL; Cruz Orea A; Gutierrez Fuentes R; Bautista-Hernández A; Pal U
    J Nanosci Nanotechnol; 2006 Mar; 6(3):685-90. PubMed ID: 16573121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity.
    Huang S; Wang J; Zhang Y; Yu Z; Qi C
    Nanomaterials (Basel); 2016 Jun; 6(6):. PubMed ID: 28335246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on preparation, stability, thermal conductivity, and viscosity of silver nanoparticles-decorated three-dimensional graphene-like porous carbon hybrid nanofluids.
    Jin C; Wu Q; Zhang H; Yang G; Yuan X; Fu H
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33691293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.
    Nishioka M; Miyakawa M; Kataoka H; Koda H; Sato K; Suzuki TM
    Nanoscale; 2011 Jun; 3(6):2621-6. PubMed ID: 21552644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Tungsten Disulfide-Based Ethylene Glycol Nanofluids: Stability, Thermal Conductivity, and Rheological Properties.
    Shah SNA; Shahabuddin S; Mohd Sabri MF; Mohd Salleh MF; Mohd Said S; Khedher KM; Sridewi N
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32659972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Stability Study of Nano-Silver Particles Dispersed in Various Solvents by Turbiscan Lab Optical Analyzer].
    Xia ZH; Lü LY; Wang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1992-6. PubMed ID: 26717765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-Assisted Coating of PMMA beads by silver nanoparticles.
    Irzh A; Perkas N; Gedanken A
    Langmuir; 2007 Sep; 23(19):9891-7. PubMed ID: 17705515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.
    Selvakumar P; Suresh S
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2325-33. PubMed ID: 24745228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.
    Cheng KM; Hung YW; Chen CC; Liu CC; Young JJ
    Carbohydr Polym; 2014 Sep; 110():195-202. PubMed ID: 24906746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NePCM Based on Silver Dispersions in Poly(Ethylene Glycol) as a Stable Solution for Thermal Storage.
    Marcos MA; Cabaleiro D; Hamze S; Fedele L; Bobbo S; Estellé P; Lugo L
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.