BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25489604)

  • 1. Ruminal acidosis in feedlot: from aetiology to prevention.
    Hernández J; Benedito JL; Abuelo A; Castillo C
    ScientificWorldJournal; 2014; 2014():702572. PubMed ID: 25489604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.
    Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2007 Jun; 90 Suppl 1():E17-38. PubMed ID: 17517750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing physically effective fiber content of dairy cow diets through forage proportion versus forage chop length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2009 Apr; 92(4):1603-15. PubMed ID: 19307642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The rumen acidosis complex--recent knowledge and experiences (1). A review].
    Dirksen G
    Tierarztl Prax; 1985; 13(4):501-12. PubMed ID: 3834644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of grain, fructose, and histidine on ruminal pH and fermentation products during an induced subacute acidosis protocol.
    Golder HM; Celi P; Rabiee AR; Heuer C; Bramley E; Miller DW; King R; Lean IJ
    J Dairy Sci; 2012 Apr; 95(4):1971-82. PubMed ID: 22459843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of probiotics and monensin in the prophylaxis of acute ruminal lactic acidosis in sheep.
    Reis LF; Sousa RS; Oliveira FLC; Rodrigues FAML; Araújo CASC; Meira-Júnior EBS; Barrêto-Júnior RA; Mori CS; Minervino AHH; Ortolani EL
    BMC Vet Res; 2018 Jan; 14(1):9. PubMed ID: 29316923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of forage particle size and grain fermentability in midlactation cows. II. Ruminal pH and chewing activity.
    Krause KM; Combs DK; Beauchemin KA
    J Dairy Sci; 2002 Aug; 85(8):1947-57. PubMed ID: 12214987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow.
    Rustomo B; AlZahal O; Odongo NE; Duffield TF; McBride BW
    J Dairy Sci; 2006 Dec; 89(12):4758-68. PubMed ID: 17106107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of varying forage particle size and fermentable carbohydrates on feed sorting, ruminal fermentation, and milk and component yields of dairy cows.
    Maulfair DD; Heinrichs AJ
    J Dairy Sci; 2013 May; 96(5):3085-97. PubMed ID: 23477824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations.
    Zebeli Q; Tafaj M; Steingass H; Metzler B; Drochner W
    J Dairy Sci; 2006 Feb; 89(2):651-68. PubMed ID: 16428635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet.
    Zebeli Q; Dijkstra J; Tafaj M; Steingass H; Ametaj BN; Drochner W
    J Dairy Sci; 2008 May; 91(5):2046-66. PubMed ID: 18420634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition.
    Chiquette J; Allison MJ; Rasmussen MA
    J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo indices for predicting acidosis risk of grains in cattle: Comparison with in vitro methods.
    Lean IJ; Golder HM; Black JL; King R; Rabiee AR
    J Anim Sci; 2013 Jun; 91(6):2823-35. PubMed ID: 23482574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: dry matter intake and ruminal fermentation.
    Schwaiger T; Beauchemin KA; Penner GB
    J Anim Sci; 2013 Dec; 91(12):5729-42. PubMed ID: 24158369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incidence, prevalence, severity, and risk factors for ruminal acidosis in feedlot steers during backgrounding, diet transition, and finishing.
    Castillo-Lopez E; Wiese BI; Hendrick S; McKinnon JJ; McAllister TA; Beauchemin KA; Penner GB
    J Anim Sci; 2014 Jul; 92(7):3053-63. PubMed ID: 24879761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.
    Beauchemin KA; Yang WZ; Rode LM
    J Dairy Sci; 2003 Feb; 86(2):630-43. PubMed ID: 12647969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows?
    Marden JP; Julien C; Monteils V; Auclair E; Moncoulon R; Bayourthe C
    J Dairy Sci; 2008 Sep; 91(9):3528-35. PubMed ID: 18765611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ruminal acidosis complex--new observations and experiences (2). A review].
    Dirksen G
    Tierarztl Prax; 1986; 14(1):23-33. PubMed ID: 2872733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the chop lengths of alfalfa silage and oat silage on feed intake, milk production, feeding behavior, and rumen fermentation of dairy cows.
    Bhandari SK; Li S; Ominski KH; Wittenberg KM; Plaizier JC
    J Dairy Sci; 2008 May; 91(5):1942-58. PubMed ID: 18420626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.