These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25489793)

  • 41. Early Stages of Electrochemical Oxidation of Cu(111) and Polycrystalline Cu Surfaces Revealed by
    Bodappa N; Su M; Zhao Y; Le JB; Yang WM; Radjenovic P; Dong JC; Cheng J; Tian ZQ; Li JF
    J Am Chem Soc; 2019 Aug; 141(31):12192-12196. PubMed ID: 31328527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential-induced phase transition of low-index Au single crystal surfaces in propylene carbonate solution.
    Yoshimoto S; Kim YG; Sato K; Inukai J; Itaya K
    Phys Chem Chem Phys; 2012 Feb; 14(7):2286-91. PubMed ID: 22237766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cu metal embedded in oxidized matrix catalyst to promote CO
    Xiao H; Goddard WA; Cheng T; Liu Y
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6685-6688. PubMed ID: 28607069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pb deposition on I-coated Au(111). UHV-EC and EC-STM studies.
    Kim YG; Kim JY; Thambidurai C; Stickney JL
    Langmuir; 2007 Feb; 23(5):2539-45. PubMed ID: 17309208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case.
    Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M
    Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative studies of adsorbate dynamics at noble metal electrodes by in situ Video-STM.
    Yang YC; Magnussen OM
    Phys Chem Chem Phys; 2013 Aug; 15(30):12480-7. PubMed ID: 23652411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrodeposition of copper on a Pt(111) electrode in sulfuric acid containing poly(ethylene glycol) and chloride ions as probed by in situ STM.
    Fu Y; Pao T; Chen SZ; Yau S; Dow WP; Lee YL
    Langmuir; 2012 Jul; 28(26):10120-7. PubMed ID: 22676369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active sites for outer-sphere, inner-sphere, and complex multistage electrochemical reactions at polycrystalline boron-doped diamond electrodes (pBDD) revealed with scanning electrochemical cell microscopy (SECCM).
    Patten HV; Lai SC; Macpherson JV; Unwin PR
    Anal Chem; 2012 Jun; 84(12):5427-32. PubMed ID: 22607491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO
    Le Duff CS; Lawrence MJ; Rodriguez P
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12919-12924. PubMed ID: 28834583
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct observation of conformational changes of beta-substituted duodecithiophene on a Au(111)-(square root(3) x 22) substrate using in situ electrochemical STM in 0.1 M HClO4.
    Tongol BJ; Wang L; Yau SL; Otsubo T; Itaya K
    Langmuir; 2010 Jan; 26(2):982-9. PubMed ID: 20067311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical Fragmentation of Cu
    Jung H; Lee SY; Lee CW; Cho MK; Won DH; Kim C; Oh HS; Min BK; Hwang YJ
    J Am Chem Soc; 2019 Mar; 141(11):4624-4633. PubMed ID: 30702874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating the Origin of Enhanced C
    Lei Q; Zhu H; Song K; Wei N; Liu L; Zhang D; Yin J; Dong X; Yao K; Wang N; Li X; Davaasuren B; Wang J; Han Y
    J Am Chem Soc; 2020 Mar; 142(9):4213-4222. PubMed ID: 32041401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO
    Okatenko V; Loiudice A; Newton MA; Stoian DC; Blokhina A; Chen AN; Rossi K; Buonsanti R
    J Am Chem Soc; 2023 Mar; 145(9):5370-5383. PubMed ID: 36847799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO
    Zhu S; Jiang B; Cai WB; Shao M
    J Am Chem Soc; 2017 Nov; 139(44):15664-15667. PubMed ID: 29058890
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical reactions at a porphyrin-copper interface.
    Hai NT; Furukawa S; Vosch T; De Feyter S; Broekmann P; Wandelt K
    Phys Chem Chem Phys; 2009 Jul; 11(26):5422-30. PubMed ID: 19551211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An STM study of the pH dependent redox activity of a two-dimensional hydrogen bonding porphyrin network at an electrochemical interface.
    Yuan Q; Xing Y; Borguet E
    J Am Chem Soc; 2010 Apr; 132(14):5054-60. PubMed ID: 20307064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films.
    Li CW; Kanan MW
    J Am Chem Soc; 2012 May; 134(17):7231-4. PubMed ID: 22506621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct STM elucidation of the effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation.
    Inukai J; Tryk DA; Abe T; Wakisaka M; Uchida H; Watanabe M
    J Am Chem Soc; 2013 Jan; 135(4):1476-90. PubMed ID: 23294135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes.
    Chen CH; Meadows KE; Cuharuc A; Lai SC; Unwin PR
    Phys Chem Chem Phys; 2014 Sep; 16(34):18545-52. PubMed ID: 25072300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.