These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25489883)
1. Cytochrome P450-Mediated Biotransformation of Sorafenib and Its N-Oxide Metabolite: Implications for Cell Viability and Human Toxicity. Gillani TB; Rawling T; Murray M Chem Res Toxicol; 2015 Jan; 28(1):92-102. PubMed ID: 25489883 [TBL] [Abstract][Full Text] [Related]
2. Differential effects of hepatic cirrhosis on the intrinsic clearances of sorafenib and imatinib by CYPs in human liver. Murray M; Gillani TB; Ghassabian S; Edwards RJ; Rawling T Eur J Pharm Sci; 2018 Mar; 114():55-63. PubMed ID: 29223619 [TBL] [Abstract][Full Text] [Related]
3. Anti-proliferative actions of N'-desmethylsorafenib in human breast cancer cells. Cui PH; Rawling T; Gillani TB; Bourget K; Wang XS; Zhou F; Murray M Biochem Pharmacol; 2013 Aug; 86(3):419-27. PubMed ID: 23732299 [TBL] [Abstract][Full Text] [Related]
4. Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Ghassabian S; Rawling T; Zhou F; Doddareddy MR; Tattam BN; Hibbs DE; Edwards RJ; Cui PH; Murray M Biochem Pharmacol; 2012 Jul; 84(2):215-23. PubMed ID: 22513143 [TBL] [Abstract][Full Text] [Related]
5. The impact of individual human cytochrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib. Vavrová K; Indra R; Pompach P; Heger Z; Hodek P Biomed Pharmacother; 2022 Jan; 145():112391. PubMed ID: 34847475 [TBL] [Abstract][Full Text] [Related]
6. 1118-20, an indazole diarylurea compound, inhibits hepatocellular carcinoma HepG2 proliferation and tumour angiogenesis involving Wnt/β-catenin pathway and receptor tyrosine kinases. Lu YY; Wang JJ; Zhang XK; Li WB; Guo XL J Pharm Pharmacol; 2015 Oct; 67(10):1393-405. PubMed ID: 26076716 [TBL] [Abstract][Full Text] [Related]
7. Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells. Fedejko-Kap B; Niemira M; Radominska-Pandya A; Mazerska Z Xenobiotica; 2011 Dec; 41(12):1044-55. PubMed ID: 21859392 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved. Erratico CA; Szeitz A; Bandiera SM Chem Res Toxicol; 2013 May; 26(5):721-31. PubMed ID: 23537005 [TBL] [Abstract][Full Text] [Related]
9. Sorafenib inhibition of hepatic stellate cell proliferation in tumor microenvironment of hepatocellular carcinoma: a study of the sorafenib mechanisms. Geng ZM; Jha RK; Li B; Chen C; Li WZ; Zheng JB; Wang L; Huanchen S Cell Biochem Biophys; 2014 Jul; 69(3):717-24. PubMed ID: 24633454 [TBL] [Abstract][Full Text] [Related]
10. Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol. Chiu NT; Tomlinson Guns ES; Adomat H; Jia W; Deb S Biopharm Drug Dispos; 2014 Mar; 35(2):104-18. PubMed ID: 24151189 [TBL] [Abstract][Full Text] [Related]
11. Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. Broecker-Preuss M; Müller S; Britten M; Worm K; Schmid KW; Mann K; Fuhrer D BMC Cancer; 2015 Mar; 15():184. PubMed ID: 25879531 [TBL] [Abstract][Full Text] [Related]
12. Heparin-functionalized Pluronic nanoparticles to enhance the antitumor efficacy of sorafenib in gastric cancers. Yang YC; Cai J; Yin J; Zhang J; Wang KL; Zhang ZT Carbohydr Polym; 2016 Jan; 136():782-90. PubMed ID: 26572413 [TBL] [Abstract][Full Text] [Related]
13. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Xuan J; Chen S; Ning B; Tolleson WH; Guo L Chem Biol Interact; 2016 Aug; 255():63-73. PubMed ID: 26477383 [TBL] [Abstract][Full Text] [Related]
14. An in vitro tool to assess cytochrome P450 drug biotransformation-dependent cytotoxicity in engineered HepG2 cells generated by using adenoviral vectors. Lahoz A; Vilà MR; Fabre M; Miquel JM; Rivas M; Maines J; Castell JV; Gómez-Lechón MJ Toxicol In Vitro; 2013 Jun; 27(4):1410-5. PubMed ID: 22910125 [TBL] [Abstract][Full Text] [Related]
15. Flavonoid-enriched apple fraction AF4 induces cell cycle arrest, DNA topoisomerase II inhibition, and apoptosis in human liver cancer HepG2 cells. Sudan S; Rupasinghe HP Nutr Cancer; 2014; 66(7):1237-46. PubMed ID: 25256427 [TBL] [Abstract][Full Text] [Related]
16. Enhanced inhibition of microsomal cytochrome P450 3A2 in rat liver during diltiazem biotransformation. Murray M; Butler AM J Pharmacol Exp Ther; 1996 Dec; 279(3):1447-52. PubMed ID: 8968370 [TBL] [Abstract][Full Text] [Related]
17. The role of hepatic cytochrome P450s in the cytotoxicity of dronedarone. Chen S; Wu Q; Ning B; Bryant M; Guo L Arch Toxicol; 2018 Jun; 92(6):1969-1981. PubMed ID: 29616291 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells. Paech F; Mingard C; Grünig D; Abegg VF; Bouitbir J; Krähenbühl S Toxicology; 2018 Feb; 395():34-44. PubMed ID: 29341879 [TBL] [Abstract][Full Text] [Related]
19. In vitro toxicological evaluation of NCS-382, a high-affinity antagonist of γ-hydroxybutyrate (GHB) binding. Vogel KR; Ainslie GR; Roullet JB; McConnell A; Gibson KM Toxicol In Vitro; 2017 Apr; 40():196-202. PubMed ID: 28119166 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites. Avent KM; DeVoss JJ; Gillam EM Chem Res Toxicol; 2006 Jul; 19(7):914-20. PubMed ID: 16841959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]