BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25489924)

  • 1. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.
    Bett JS; Ritorto MS; Ewan R; Jaffray EG; Virdee S; Chin JW; Knebel A; Kurz T; Trost M; Tatham MH; Hay RT
    Biochem J; 2015 Mar; 466(3):489-98. PubMed ID: 25489924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains.
    Zhou ZR; Zhang YH; Liu S; Song AX; Hu HY
    Biochem J; 2012 Jan; 441(1):143-9. PubMed ID: 21851340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitin dimers control the hydrolase activity of UCH-L3.
    Setsuie R; Sakurai M; Sakaguchi Y; Wada K
    Neurochem Int; 2009; 54(5-6):314-21. PubMed ID: 19154770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC; Melandri FD; Stein RL
    Biochemistry; 1998 Feb; 37(7):1868-79. PubMed ID: 9485312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes.
    Yin ST; Huang H; Zhang YH; Zhou ZR; Song AX; Hong FS; Hu HY
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):76-9. PubMed ID: 22086173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of proteolysis by human deubiquitinating enzymes.
    Eletr ZM; Wilkinson KD
    Biochim Biophys Acta; 2014 Jan; 1843(1):114-28. PubMed ID: 23845989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Ubiquitin Variants with Selectivity for Ubiquitin C-Terminal Hydrolase Deubiquitinases.
    Hewitt CS; Krabill AD; Das C; Flaherty DP
    Biochemistry; 2020 Sep; 59(37):3447-3462. PubMed ID: 32865982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.
    Misaghi S; Galardy PJ; Meester WJ; Ovaa H; Ploegh HL; Gaudet R
    J Biol Chem; 2005 Jan; 280(2):1512-20. PubMed ID: 15531586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential role of ubiquitin c-terminal hydrolases in oncogenesis.
    Fang Y; Fu D; Shen XZ
    Biochim Biophys Acta; 2010 Aug; 1806(1):1-6. PubMed ID: 20302916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UCH-L3 structure and function: Insights about a promising drug target.
    Hafez N; Modather El-Awadly Z; Arafa RK
    Eur J Med Chem; 2022 Jan; 227():113970. PubMed ID: 34752952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing USP7 Deubiquitinase Substrate Specificity by Unbiased Synthesis of Ubiquitin Tagged SUMO2.
    Jiang HK; Kurkute P; Li CL; Wang YH; Chen PJ; Lin SY; Wang YS
    Biochemistry; 2020 Oct; 59(40):3796-3801. PubMed ID: 33006472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of fluorescent ubiquitin derivatives as highly sensitive substrates for the deubiquitinating enzymes UCH-L3 and USP-2.
    Tirat A; Schilb A; Riou V; Leder L; Gerhartz B; Zimmermann J; Worpenberg S; Eidhoff U; Freuler F; Stettler T; Mayr L; Ottl J; Leuenberger B; Filipuzzi I
    Anal Biochem; 2005 Aug; 343(2):244-55. PubMed ID: 15963938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): Potential Mediators for Cancer and Neurodegeneration.
    Sharma A; Liu H; Tobar-Tosse F; Chand Dakal T; Ludwig M; Holz FG; Loeffler KU; Wüllner U; Herwig-Carl MC
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant deubiquitinases: from structure and activity to biological functions.
    Luo R; Yang K; Xiao W
    Plant Cell Rep; 2023 Mar; 42(3):469-486. PubMed ID: 36567335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UL36 Encoded by Marek's Disease Virus Exhibits Linkage-Specific Deubiquitinase Activity.
    Lin J; Ai Y; Zhou H; Lv Y; Wang M; Xu J; Yu C; Zhang H; Wang M
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, purification and enzymatic characterization of a recombinant human ubiquitin-specific protease 47.
    Piao J; Tashiro A; Nishikawa M; Aoki Y; Moriyoshi E; Hattori A; Kakeya H
    J Biochem; 2015 Dec; 158(6):477-84. PubMed ID: 26115687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly, analysis and architecture of atypical ubiquitin chains.
    Hospenthal MK; Freund SM; Komander D
    Nat Struct Mol Biol; 2013 May; 20(5):555-65. PubMed ID: 23563141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis.
    Hayama R; Yang P; Valverde F; Mizoguchi T; Furutani-Hayama I; Vierstra RD; Coupland G
    Sci Rep; 2019 Nov; 9(1):17030. PubMed ID: 31745110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1.
    Meray RK; Lansbury PT
    J Biol Chem; 2007 Apr; 282(14):10567-75. PubMed ID: 17259170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes).
    Drag M; Mikolajczyk J; Bekes M; Reyes-Turcu FE; Ellman JA; Wilkinson KD; Salvesen GS
    Biochem J; 2008 Nov; 415(3):367-75. PubMed ID: 18601651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.