These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 25489993)
1. Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics. Lee H; Puodziukynaite E; Zhang Y; Stephenson JC; Richter LJ; Fischer DA; DeLongchamp DM; Emrick T; Briseno AL J Am Chem Soc; 2015 Jan; 137(1):540-9. PubMed ID: 25489993 [TBL] [Abstract][Full Text] [Related]
2. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. Yeo JS; Yun JM; Kim DY; Park S; Kim SS; Yoon MH; Kim TW; Na SI ACS Appl Mater Interfaces; 2012 May; 4(5):2551-60. PubMed ID: 22489686 [TBL] [Abstract][Full Text] [Related]
3. Efficient polymer solar cells fabricated on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-etched old indium tin oxide substrates. Elshobaki M; Anderegg J; Chaudhary S ACS Appl Mater Interfaces; 2014 Aug; 6(15):12196-202. PubMed ID: 25046352 [TBL] [Abstract][Full Text] [Related]
4. On the use and influence of electron-blocking interlayers in polymer light-emitting diodes. Jin R; Levermore PA; Huang J; Wang X; Bradley DD; deMello JC Phys Chem Chem Phys; 2009 May; 11(18):3455-62. PubMed ID: 19421548 [TBL] [Abstract][Full Text] [Related]
5. Role of humidity on indium and tin migration in organic photovoltaic devices. Sharma A; Andersson G; Lewis DA Phys Chem Chem Phys; 2011 Mar; 13(10):4381-7. PubMed ID: 21258707 [TBL] [Abstract][Full Text] [Related]
7. Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells. Rider DA; Tucker RT; Worfolk BJ; Krause KM; Lalany A; Brett MJ; Buriak JM; Harris KD Nanotechnology; 2011 Feb; 22(8):085706. PubMed ID: 21242635 [TBL] [Abstract][Full Text] [Related]
8. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory. Cheng XF; Hou X; Qian WH; He JH; Xu QF; Li H; Li NJ; Chen DY; Lu JM ACS Appl Mater Interfaces; 2017 Aug; 9(33):27847-27852. PubMed ID: 28777544 [TBL] [Abstract][Full Text] [Related]
9. Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. Ouyang J ACS Appl Mater Interfaces; 2013 Dec; 5(24):13082-8. PubMed ID: 24308924 [TBL] [Abstract][Full Text] [Related]
10. Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering. Chen Q; Worfolk BJ; Hauger TC; Al-Atar U; Harris KD; Buriak JM ACS Appl Mater Interfaces; 2011 Oct; 3(10):3962-70. PubMed ID: 21950539 [TBL] [Abstract][Full Text] [Related]
11. Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells. Park H; Shi Y; Kong J Nanoscale; 2013 Oct; 5(19):8934-9. PubMed ID: 23959398 [TBL] [Abstract][Full Text] [Related]
12. Organic photovoltaic cells with stable top metal electrodes modified with polyethylenimine. Khan TM; Zhou Y; Dindar A; Shim JW; Fuentes-Hernandez C; Kippelen B ACS Appl Mater Interfaces; 2014 May; 6(9):6202-7. PubMed ID: 24773311 [TBL] [Abstract][Full Text] [Related]
13. Tuning the Work Function of Printed Polymer Electrodes by Introducing a Fluorinated Polymer To Enhance the Operational Stability in Bottom-Contact Organic Field-Effect Transistors. Kim SH; Kim J; Nam S; Lee HS; Lee SW; Jang J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12637-12646. PubMed ID: 28319362 [TBL] [Abstract][Full Text] [Related]
14. A Nonconjugated Zwitterionic Polymer: Cathode Interfacial Layer Comparable with PFN for Narrow-Bandgap Polymer Solar Cells. Li Z; Chen Q; Liu Y; Ding L; Zhang K; Zhu K; Yuan L; Dong B; Zhou Y; Song B Macromol Rapid Commun; 2018 Jul; 39(14):e1700828. PubMed ID: 30117644 [TBL] [Abstract][Full Text] [Related]
15. Ultrathin Graphene Intercalation in PEDOT:PSS/Colorless Polyimide-Based Transparent Electrodes for Enhancement of Optoelectronic Performance and Operational Stability of Organic Devices. Lee DH; Yun HD; Jung ED; Chu JH; Nam YS; Song S; Seok SH; Song MH; Kwon SY ACS Appl Mater Interfaces; 2019 Jun; 11(23):21069-21077. PubMed ID: 31094197 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient, inverted polymer solar cells with indium tin oxide modified with solution-processed zwitterions as the transparent cathode. Sun K; Zhao B; Kumar A; Zeng K; Ouyang J ACS Appl Mater Interfaces; 2012 Apr; 4(4):2009-17. PubMed ID: 22475017 [TBL] [Abstract][Full Text] [Related]
18. Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer. Meng Y; Hu Z; Ai N; Jiang Z; Wang J; Peng J; Cao Y ACS Appl Mater Interfaces; 2014 Apr; 6(7):5122-9. PubMed ID: 24611433 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer. Yu JC; Jang JI; Lee BR; Lee GW; Han JT; Song MH ACS Appl Mater Interfaces; 2014 Feb; 6(3):2067-73. PubMed ID: 24433032 [TBL] [Abstract][Full Text] [Related]
20. Challenge beyond Graphene: Metal Oxide/Graphene/Metal Oxide Electrodes for Optoelectronic Devices. Kim S; Kwon KC; Park JY; Cho HW; Lee I; Kim SY; Lee JL ACS Appl Mater Interfaces; 2016 May; 8(20):12932-9. PubMed ID: 27135260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]