These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25490059)

  • 61. Comparison of Long-Evans and Wistar rats in sensitivity to central cholinergic blockade with scopolamine in two spatial tasks: an active place avoidance and the Morris water maze.
    Entlerova M; Lobellova V; Hatalova H; Zemanova A; Vales K; Stuchlik A
    Physiol Behav; 2013 Aug; 120():11-8. PubMed ID: 23831741
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Muscarinic receptor blockade in ventral hippocampus and prelimbic cortex impairs memory for socially transmitted food preference.
    Carballo-Márquez A; Vale-Martínez A; Guillazo-Blanch G; Martí-Nicolovius M
    Hippocampus; 2009 May; 19(5):446-55. PubMed ID: 19004013
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Oscillatory signatures of crossmodal congruence effects: An EEG investigation employing a visuotactile pattern matching paradigm.
    Göschl F; Friese U; Daume J; König P; Engel AK
    Neuroimage; 2015 Aug; 116():177-86. PubMed ID: 25846580
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibitory avoidance memory deficit induced by scopolamine: Interaction of cholinergic and glutamatergic systems in the ventral tegmental area.
    Mahmoodi G; Ahmadi S; Pourmotabbed A; Oryan S; Zarrindast MR
    Neurobiol Learn Mem; 2010 Jul; 94(1):83-90. PubMed ID: 20403448
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of chronic scopolamine administration on spatial working memory and hippocampal receptors related to learning.
    Doguc DK; Delibas N; Vural H; Altuntas I; Sutcu R; Sonmez Y
    Behav Pharmacol; 2012 Dec; 23(8):762-70. PubMed ID: 23080310
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks.
    Ennaceur A; Michalikova S; Bradford A; Ahmed S
    Behav Brain Res; 2005 Apr; 159(2):247-66. PubMed ID: 15817188
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characteristics of object location memory in mice: Behavioral and pharmacological studies.
    Murai T; Okuda S; Tanaka T; Ohta H
    Physiol Behav; 2007 Jan; 90(1):116-24. PubMed ID: 17049363
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Scopolamine-induced deficits in a two-trial object recognition task in mice.
    Dodart JC; Mathis C; Ungerer A
    Neuroreport; 1997 Mar; 8(5):1173-8. PubMed ID: 9175108
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Vision influences on tactile discrimination of grating orientation].
    Wada Y
    Shinrigaku Kenkyu; 2007 Aug; 78(3):297-302. PubMed ID: 17892028
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Involvement of central muscarinic receptors in social and nonsocial learning in sheep.
    Ferreira G; Poindron P; Lévy F
    Pharmacol Biochem Behav; 2003 Mar; 74(4):969-75. PubMed ID: 12667912
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of muscarinic blockade in perirhinal cortex during visual recognition.
    Tang Y; Mishkin M; Aigner TG
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12667-9. PubMed ID: 9356507
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of visuo-haptic transfer for object recognition in typical preschool and school-aged children.
    Purpura G; Cioni G; Tinelli F
    Child Neuropsychol; 2018 Jul; 24(5):657-670. PubMed ID: 28427295
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deficits in object-in-place but not relative recency performance in the APPswe/PS1dE9 mouse model of Alzheimer's disease: Implications for object recognition.
    Bonardi C; Pardon MC; Armstrong P
    Behav Brain Res; 2016 Oct; 313():71-81. PubMed ID: 27395445
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rats (Rattus norvegicus) flexibly retrieve objects' non-spatial and spatial information from their visuospatial working memory: effects of integrated and separate processing of these features in a missing-object recognition task.
    Keshen C; Cohen J
    Anim Cogn; 2016 Jan; 19(1):91-107. PubMed ID: 26311419
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Critical role of the cholinergic system for object-in-place associative recognition memory.
    Barker GR; Warburton EC
    Learn Mem; 2009 Jan; 16(1):8-11. PubMed ID: 19117911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. T-type calcium channels in the orbitofrontal cortex mediate sensory integration as measured using a spontaneous oddity task in rats.
    Marks WN; Parker ME; Zabder NK; Greba Q; Snutch TP; Howland JG
    Learn Mem; 2018 Jul; 25(7):317-324. PubMed ID: 29907639
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The spontaneous location recognition task for assessing spatial pattern separation and memory across a delay in rats and mice.
    Reichelt AC; Kramar CP; Ghosh-Swaby OR; Sheppard PAS; Kent BA; Bekinschtein P; Saksida LM; Bussey TJ
    Nat Protoc; 2021 Dec; 16(12):5616-5633. PubMed ID: 34741153
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dysgranular retrosplenial cortex lesions in rats disrupt cross-modal object recognition.
    Hindley EL; Nelson AJ; Aggleton JP; Vann SD
    Learn Mem; 2014 Feb; 21(3):171-9. PubMed ID: 24554671
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Blockade of muscarinic receptors impairs the retrieval of well-trained memory.
    Soma S; Suematsu N; Shimegi S
    Front Aging Neurosci; 2014; 6():63. PubMed ID: 24782760
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pattern separation deficits may contribute to age-associated recognition impairments.
    Burke SN; Wallace JL; Nematollahi S; Uprety AR; Barnes CA
    Behav Neurosci; 2010 Oct; 124(5):559-73. PubMed ID: 20939657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.