BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25490181)

  • 1. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.
    Watkins KA; Chen R
    Int J Pharm; 2015 Jan; 478(2):496-503. PubMed ID: 25490181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of cell membrane disruption by pH-responsive pseudo-peptides through grafting with hydrophilic side chains.
    Chen R; Yue Z; Eccleston ME; Williams S; Slater NK
    J Control Release; 2005 Nov; 108(1):63-72. PubMed ID: 16139914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery.
    Kang GD; Cheon SH; Khang G; Song SC
    Eur J Pharm Biopharm; 2006 Jul; 63(3):340-6. PubMed ID: 16527468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomaterials; 2009 Apr; 30(10):1954-61. PubMed ID: 19138797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics.
    Hutton ARJ; McCrudden MTC; Larrañeta E; Donnelly RF
    J Mater Chem B; 2020 May; 8(19):4202-4209. PubMed ID: 32292995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds.
    Kim SH; Chu CC
    J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (epsilon-caprolactone) diblock copolymer and alpha-cyclodextrin and their controlled release property.
    Li X; Li J
    J Biomed Mater Res A; 2008 Sep; 86(4):1055-61. PubMed ID: 18067162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino Acid Based Hydrogels with Dual Responsiveness for Oral Drug Delivery.
    Wang S; Liu X; Villar-Garcia IJ; Chen R
    Macromol Biosci; 2016 Sep; 16(9):1258-64. PubMed ID: 27150528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers.
    Nam K; Watanabe J; Ishihara K
    Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pH-Responsive Amphiphilic Hydrogel Based on Pseudopeptides and Poly(ethylene glycol) for Oral Delivery of Hydrophobic Drugs.
    Wang S; Attah R; Li J; Chen Y; Chen R
    ACS Biomater Sci Eng; 2018 Dec; 4(12):4236-4243. PubMed ID: 33418822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.
    Wang SS; Hsieh PL; Chen PS; Chen YT; Jan JS
    Colloids Surf B Biointerfaces; 2013 Nov; 111():423-31. PubMed ID: 23872465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-crosslinked alginate and layered microspheres to modulate the release of encapsulated FITC-dextran.
    Turner D; Baldwin E; Russell K; Wells LA
    Eur J Pharm Biopharm; 2021 Jan; 158():313-322. PubMed ID: 33259898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs.
    Polo Fonseca L; Trinca RB; Felisberti MI
    Int J Pharm; 2018 Jul; 546(1-2):106-114. PubMed ID: 29772283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics.
    Brandl F; Kastner F; Gschwind RM; Blunk T; Tessmar J; Göpferich A
    J Control Release; 2010 Mar; 142(2):221-8. PubMed ID: 19887092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of aromatic side-chains on the aqueous properties of pH-sensitive poly(L-lysine iso-phthalamide) derivatives.
    Khormaee S; Chen R; Park JK; Slater NK
    J Biomater Sci Polym Ed; 2010; 21(12):1573-88. PubMed ID: 20537242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partially biodegradable temperature- and pH-responsive poly(N-isopropylacrylamide)/dextran-maleic acid hydrogels: formulation and controlled drug delivery of doxorubicin.
    Namkung S; Chu CC
    J Biomater Sci Polym Ed; 2007; 18(7):901-24. PubMed ID: 17688747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylic acid-based pH-sensitive hydrogels as potential oral insulin delivery systems.
    Demirdirek B; Uhrich KE
    J Drug Target; 2015; 23(7-8):716-24. PubMed ID: 26453167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.
    Manga RD; Jha PK
    J Pharm Sci; 2017 Feb; 106(2):629-638. PubMed ID: 27890245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroporous chitosan hydrogels: Effects of sulfur on the loading and release behaviour of amino acid-based compounds.
    Elviri L; Asadzadeh M; Cucinelli R; Bianchera A; Bettini R
    Carbohydr Polym; 2015 Nov; 132():50-8. PubMed ID: 26256323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine-derived, pH-sensitive and biodegradable poly(beta-aminoester urethane) networks and their local drug delivery behaviour.
    Tamer Y; Chen B
    Soft Matter; 2018 Feb; 14(7):1195-1209. PubMed ID: 29349467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.