These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25490193)

  • 1. Use of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms.
    Samarian DS; Jakubovics NS; Luo TL; Rickard AH
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25490193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials.
    Nance WC; Dowd SE; Samarian D; Chludzinski J; Delli J; Battista J; Rickard AH
    J Antimicrob Chemother; 2013 Nov; 68(11):2550-60. PubMed ID: 23800904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.
    Kolderman E; Bettampadi D; Samarian D; Dowd SE; Foxman B; Jakubovics NS; Rickard AH
    PLoS One; 2015; 10(5):e0121835. PubMed ID: 25946040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing BAIT (Biofilm Architecture Inference Tool): a software program to evaluate the architecture of oral multi-species biofilms.
    Luo TL; Hayashi M; Zsiska M; Circello B; Eisenberg M; Gonzalez-Cabezas C; Foxman B; Marrs CF; Rickard AH
    Microbiology (Reading); 2019 May; 165(5):527-537. PubMed ID: 30882296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and pyrosequencing analysis of an in-vitro oral biofilm model.
    Kistler JO; Pesaro M; Wade WG
    BMC Microbiol; 2015 Feb; 15():24. PubMed ID: 25880819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
    Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R
    J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New device for high-throughput viability screening of flow biofilms.
    Benoit MR; Conant CG; Ionescu-Zanetti C; Schwartz M; Matin A
    Appl Environ Microbiol; 2010 Jul; 76(13):4136-42. PubMed ID: 20435763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota.
    Sánchez MC; Llama-Palacios A; Blanc V; León R; Herrera D; Sanz M
    J Periodontal Res; 2011 Apr; 46(2):252-60. PubMed ID: 21261622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells.
    Shin JM; Ateia I; Paulus JR; Liu H; Fenno JC; Rickard AH; Kapila YL
    Front Microbiol; 2015; 6():617. PubMed ID: 26150809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model.
    Jiang Q; Stamatova I; Kainulainen V; Korpela R; Meurman JH
    BMC Microbiol; 2016 Jul; 16(1):149. PubMed ID: 27405227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of arginine on the growth and biofilm formation of oral bacteria.
    Huang X; Zhang K; Deng M; Exterkate RAM; Liu C; Zhou X; Cheng L; Ten Cate JM
    Arch Oral Biol; 2017 Oct; 82():256-262. PubMed ID: 28668766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.
    Fernández CE; Aspiras MB; Dodds MW; González-Cabezas C; Rickard AH
    J Appl Microbiol; 2017 Mar; 122(3):796-808. PubMed ID: 27981713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome.
    Edlund A; Yang Y; Hall AP; Guo L; Lux R; He X; Nelson KE; Nealson KH; Yooseph S; Shi W; McLean JS
    Microbiome; 2013 Oct; 1(1):25. PubMed ID: 24451062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro method for prediction of plaque reduction by dentifrice.
    Tepper B; Howard B; Schnell D; Mills L; Xu J
    J Microbiol Methods; 2015 Nov; 118():85-92. PubMed ID: 26151407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on biofilm formation by Antarctic marine bacteria in a microfluidic device.
    Jeong HH; Jeong SG; Park A; Jang SC; Hong SG; Lee CS
    Anal Biochem; 2014 Feb; 446():90-5. PubMed ID: 24513116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR.
    Price RR; Viscount HB; Stanley MC; Leung KP
    Biofouling; 2007; 23(3-4):203-13. PubMed ID: 17653931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reproducible oral microcosm biofilm model for testing dental materials.
    Rudney JD; Chen R; Lenton P; Li J; Li Y; Jones RS; Reilly C; Fok AS; Aparicio C
    J Appl Microbiol; 2012 Dec; 113(6):1540-53. PubMed ID: 22925110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel.
    Periasamy S; Kolenbrander PE
    J Bacteriol; 2010 Jun; 192(12):2965-72. PubMed ID: 20154130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and Analysis of Mono-species and Polymicrobial Oral Biofilms in Flow-Cell Models.
    Neilands J; Svensäter G; Boisen G; Robertsson C; Wickström C; Davies JR
    Methods Mol Biol; 2023; 2674():33-54. PubMed ID: 37258958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.
    Lam RH; Cui X; Guo W; Thorsen T
    Lab Chip; 2016 Apr; 16(9):1652-62. PubMed ID: 27045372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.