These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25490470)

  • 1. Magnetic induction tomography using an all-optical ⁸⁷Rb atomic magnetometer.
    Wickenbrock A; Jurgilas S; Dow A; Marmugi L; Renzoni F
    Opt Lett; 2014 Nov; 39(22):6367-70. PubMed ID: 25490470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Magnetic Induction Tomography of the Heart.
    Marmugi L; Renzoni F
    Sci Rep; 2016 Apr; 6():23962. PubMed ID: 27040727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature.
    Lucivero VG; Anielski P; Gawlik W; Mitchell MW
    Rev Sci Instrum; 2014 Nov; 85(11):113108. PubMed ID: 25430099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical MRI with an atomic magnetometer.
    Savukov I; Karaulanov T
    J Magn Reson; 2013 Jun; 231():39-45. PubMed ID: 23567881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sensitivity optically pumped quantum magnetometer.
    Tiporlini V; Alameh K
    ScientificWorldJournal; 2013; 2013():858379. PubMed ID: 23766716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals.
    Oida T; Ito Y; Kamada K; Kobayashi T
    J Magn Reson; 2012 Apr; 217():6-9. PubMed ID: 22417784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rubidium M
    Arnold D; Siegel S; Grisanti E; Wrachtrup J; Gerhardt I
    Rev Sci Instrum; 2017 Feb; 88(2):023103. PubMed ID: 28249519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezed-light optical magnetometry.
    Wolfgramm F; Cerè A; Beduini FA; Predojević A; Koschorreck M; Mitchell MW
    Phys Rev Lett; 2010 Jul; 105(5):053601. PubMed ID: 20867916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.
    Schultze V; Ijsselsteijn R; Scholtes T; Woetzel S; Meyer HG
    Opt Express; 2012 Jun; 20(13):14201-12. PubMed ID: 22714483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact, high performance atomic magnetometer for biomedical applications.
    Shah VK; Wakai RT
    Phys Med Biol; 2013 Nov; 58(22):8153-61. PubMed ID: 24200837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniature atomic scalar magnetometer for space based on the rubidium isotope
    Korth H; Strohbehn K; Tejada F; Andreou AG; Kitching J; Knappe S; Lehtonen SJ; London SM; Kafel M
    J Geophys Res Space Phys; 2016 Aug; 121(8):7870-7880. PubMed ID: 27774373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The polarization and the fundamental sensitivity of
    Liu JH; Jing DY; Wang LL; Li Y; Quan W; Fang JC; Liu WM
    Sci Rep; 2017 Jul; 7(1):6776. PubMed ID: 28755005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity optomechanical magnetometer.
    Forstner S; Prams S; Knittel J; van Ooijen ED; Swaim JD; Harris GI; Szorkovszky A; Bowen WP; Rubinsztein-Dunlop H
    Phys Rev Lett; 2012 Mar; 108(12):120801. PubMed ID: 22540567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxivity of gadolinium complexes detected by atomic magnetometry.
    Michalak DJ; Xu S; Lowery TJ; Crawford CW; Ledbetter M; Bouchard LS; Wemmer DE; Budker D; Pines A
    Magn Reson Med; 2011 Aug; 66(2):605-8. PubMed ID: 21433067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of atomic magnetometry using metasurface optics for balanced polarimetry.
    Yang X; Benelajla M; Carpenter S; Choy JT
    Opt Express; 2023 Apr; 31(8):13436-13446. PubMed ID: 37157482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of colliding-probe atomic magnetometry: breaking the symmetry-enforced magneto-optical rotation blockade.
    Deng L
    Opt Express; 2022 Nov; 30(24):44218-44228. PubMed ID: 36523101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subfemtotesla scalar atomic magnetometry using multipass cells.
    Sheng D; Li S; Dural N; Romalis MV
    Phys Rev Lett; 2013 Apr; 110(16):160802. PubMed ID: 23679590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity.
    Fourcault W; Romain R; Le Gal G; Bertrand F; Josselin V; Le Prado M; Labyt E; Palacios-Laloy A
    Opt Express; 2021 May; 29(10):14467-14475. PubMed ID: 33985169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.
    Oida T; Kobayashi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2615-8. PubMed ID: 24110263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.