These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25490550)

  • 61. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Toward a unified scoring function for native state discrimination and drug-binding pocket recognition.
    Battisti A; Zamuner S; Sarti E; Laio A
    Phys Chem Chem Phys; 2018 Jun; 20(25):17148-17155. PubMed ID: 29900428
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Collective variable driven molecular dynamics to improve protein-protein docking scoring.
    Masone D; Grosdidier S
    Comput Biol Chem; 2014 Apr; 49():1-6. PubMed ID: 24509001
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Principles of docking: An overview of search algorithms and a guide to scoring functions.
    Halperin I; Ma B; Wolfson H; Nussinov R
    Proteins; 2002 Jun; 47(4):409-43. PubMed ID: 12001221
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advances in template-based protein docking by utilizing interfaces towards completing structural interactome.
    Muratcioglu S; Guven-Maiorov E; Keskin Ö; Gursoy A
    Curr Opin Struct Biol; 2015 Dec; 35():87-92. PubMed ID: 26539658
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A systematic analysis of scoring functions in rigid-body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining.
    Barradas-Bautista D; Moal IH; Fernández-Recio J
    Proteins; 2017 Jul; 85(7):1287-1297. PubMed ID: 28342242
    [TBL] [Abstract][Full Text] [Related]  

  • 69. jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework.
    López-Camacho E; García Godoy MJ; Nebro AJ; Aldana-Montes JF
    Bioinformatics; 2014 Feb; 30(3):437-8. PubMed ID: 24273242
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Docking techniques in pharmacology: How much promising?
    Gupta M; Sharma R; Kumar A
    Comput Biol Chem; 2018 Oct; 76():210-217. PubMed ID: 30067954
    [TBL] [Abstract][Full Text] [Related]  

  • 71. LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance.
    Hauser AS; Windshügel B
    J Chem Inf Model; 2016 Jan; 56(1):188-200. PubMed ID: 26651532
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Specificity and affinity quantification of protein-protein interactions.
    Yan Z; Guo L; Hu L; Wang J
    Bioinformatics; 2013 May; 29(9):1127-33. PubMed ID: 23476023
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An evolutionary conservation-based method for refining and reranking protein complex structures.
    Akbal-Delibas B; Hashmi I; Shehu A; Haspel N
    J Bioinform Comput Biol; 2012 Jun; 10(3):1242002. PubMed ID: 22809378
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking.
    Kappel K; Das R
    Structure; 2019 Jan; 27(1):140-151.e5. PubMed ID: 30416038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking.
    Krüger DM; Ignacio Garzón J; Chacón P; Gohlke H
    PLoS One; 2014; 9(2):e89466. PubMed ID: 24586799
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps.
    Oliva R; Chermak E; Cavallo L
    Molecules; 2015 Jul; 20(7):12045-60. PubMed ID: 26140438
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Protein-RNA complexes and efficient automatic docking: expanding RosettaDock possibilities.
    Guilhot-Gaudeffroy A; Froidevaux C; Azé J; Bernauer J
    PLoS One; 2014; 9(9):e108928. PubMed ID: 25268579
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein-RNA Docking Using ICM.
    Arnautova YA; Abagyan R; Totrov M
    J Chem Theory Comput; 2018 Sep; 14(9):4971-4984. PubMed ID: 30016588
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-resolution protein-protein docking by global optimization: recent advances and future challenges.
    Park H; Lee H; Seok C
    Curr Opin Struct Biol; 2015 Dec; 35():24-31. PubMed ID: 26295792
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluating native-like structures of RNA-protein complexes through the deep learning method.
    Zeng C; Jian Y; Vosoughi S; Zeng C; Zhao Y
    Nat Commun; 2023 Feb; 14(1):1060. PubMed ID: 36828844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.