These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Protein-protein docking: from interaction to interactome. Vakser IA Biophys J; 2014 Oct; 107(8):1785-1793. PubMed ID: 25418159 [TBL] [Abstract][Full Text] [Related]
83. A conservation and biophysics guided stochastic approach to refining docked multimeric proteins. Akbal-Delibas B; Haspel N BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S7. PubMed ID: 24565106 [TBL] [Abstract][Full Text] [Related]
84. LZerD webserver for pairwise and multiple protein-protein docking. Christoffer C; Chen S; Bharadwaj V; Aderinwale T; Kumar V; Hormati M; Kihara D Nucleic Acids Res; 2021 Jul; 49(W1):W359-W365. PubMed ID: 33963854 [TBL] [Abstract][Full Text] [Related]
85. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints. Uchikoga N; Matsuzaki Y; Ohue M; Hirokawa T; Akiyama Y PLoS One; 2013; 8(7):e69365. PubMed ID: 23874954 [TBL] [Abstract][Full Text] [Related]
86. HIPPO: HIstogram-based Pseudo-POtential for scoring protein-ssRNA fragment-based docking poses. Kravchenko A; de Vries SJ; Smaïl-Tabbone M; Chauvot de Beauchene I BMC Bioinformatics; 2024 Mar; 25(1):129. PubMed ID: 38532339 [TBL] [Abstract][Full Text] [Related]
87. PPCheck: A Webserver for the Quantitative Analysis of Protein-Protein Interfaces and Prediction of Residue Hotspots. Sukhwal A; Sowdhamini R Bioinform Biol Insights; 2015; 9():141-51. PubMed ID: 26448684 [TBL] [Abstract][Full Text] [Related]
88. Protein Docking Using a Single Representation for Protein Surface, Electrostatics, and Local Dynamics. Rudden LSP; Degiacomi MT J Chem Theory Comput; 2019 Sep; 15(9):5135-5143. PubMed ID: 31390206 [TBL] [Abstract][Full Text] [Related]
89. Scoring function based on weighted residue network. Jiao X; Chang S Int J Mol Sci; 2011; 12(12):8773-86. PubMed ID: 22272103 [TBL] [Abstract][Full Text] [Related]
90. PIE-efficient filters and coarse grained potentials for unbound protein-protein docking. Ravikant DV; Elber R Proteins; 2010 Feb; 78(2):400-19. PubMed ID: 19768784 [TBL] [Abstract][Full Text] [Related]
91. TRScore: a 3D RepVGG-based scoring method for ranking protein docking models. Guo L; He J; Lin P; Huang SY; Wang J Bioinformatics; 2022 Apr; 38(9):2444-2451. PubMed ID: 35199137 [TBL] [Abstract][Full Text] [Related]
92. iScore: An MPI supported software for ranking protein-protein docking models based on a random walk graph kernel and support vector machines. Renaud N; Jung Y; Honavar V; Geng C; Bonvin AMJJ; Xue LC SoftwareX; 2020; 11():. PubMed ID: 35419466 [TBL] [Abstract][Full Text] [Related]
93. Docking Peptides on Proteins: How to Open a Lock, in the Dark, with a Flexible Key. Sacquin-Mora S; Prévost C Structure; 2015 Aug; 23(8):1373-1374. PubMed ID: 26244840 [TBL] [Abstract][Full Text] [Related]
94. Predicting Protein-Protein Interactions Using BiGGER: Case Studies. Almeida RM; Dell'Acqua S; Krippahl L; Moura JJ; Pauleta SR Molecules; 2016 Aug; 21(8):. PubMed ID: 27517887 [TBL] [Abstract][Full Text] [Related]
95. Native fold and docking pose discrimination by the same residue-based scoring function. Sarti E; Granata D; Seno F; Trovato A; Laio A Proteins; 2015 Apr; 83(4):621-30. PubMed ID: 25619680 [TBL] [Abstract][Full Text] [Related]
96. Discovery of small protein complexes from PPI networks with size-specific supervised weighting. Yong CH; Maruyama O; Wong L BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S3. PubMed ID: 25559663 [TBL] [Abstract][Full Text] [Related]
97. Some remarks on prediction of protein-protein interaction with machine learning. Zhang SW; Wei ZG Med Chem; 2015; 11(3):254-64. PubMed ID: 25548927 [TBL] [Abstract][Full Text] [Related]
98. The chemistry of snake venom and its medicinal potential. Oliveira AL; Viegas MF; da Silva SL; Soares AM; Ramos MJ; Fernandes PA Nat Rev Chem; 2022 Jul; 6(7):451-469. PubMed ID: 37117308 [TBL] [Abstract][Full Text] [Related]
99. The chemistry of snake venom and its medicinal potential. Oliveira AL; Viegas MF; da Silva SL; Soares AM; Ramos MJ; Fernandes PA Nat Rev Chem; 2022; 6(7):451-469. PubMed ID: 35702592 [TBL] [Abstract][Full Text] [Related]
100. A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction. Di Rienzo L; Milanetti E; Testi C; Montemiglio LC; Baiocco P; Boffi A; Ruocco G Comput Struct Biotechnol J; 2020; 18():2678-2686. PubMed ID: 33101606 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]