These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25490593)

  • 41. Wireless Passive Sensor Technology through Electrically Conductive Media over an Acoustic Channel.
    Schaechtle T; Aftab T; Reindl LM; Rupitsch SJ
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ceramic MEMS designed for wireless pressure monitoring in the industrial environment.
    Pavlin M; Belavic D; Novak F
    Sensors (Basel); 2012; 12(1):320-33. PubMed ID: 22368471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LTCC Flow Sensor with RFID Interface.
    Węglarski M; Jankowski-Mihułowicz P; Pitera G; Jurków D; Dorczyński M
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31906575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Impact of Housing on the Characteristics of Ceramic Pressure Sensors--An Issue of Design for Manufacturability.
    Santo Zarnik M; Belavic D; Novak F
    Sensors (Basel); 2015 Dec; 15(12):31453-63. PubMed ID: 26694386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor.
    Xiong J; Wu G; Tan Q; Wei T; Wu D; Shen S; Dong H; Zhang W
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wireless Microfluidic Sensor for Metal Ion Detection in Water.
    Liang Y; Ma M; Zhang F; Liu F; Lu T; Liu Z; Li Y
    ACS Omega; 2021 Apr; 6(13):9302-9309. PubMed ID: 33842799
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A 3D LTCC-Based Ceramic Microfluidic System with RF Dielectric Heating of Liquids.
    Makarovič K; Belavič D; Vidmar M; Malič B
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vitro and in vivo characterization of wireless and passive micro system enabling gastrointestinal pressure monitoring.
    Shi Q; Wang J; Chen D; Chen J; Li J; Bao K
    Biomed Microdevices; 2014 Dec; 16(6):859-68. PubMed ID: 25119603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A piezoelectric active mirror suspension system embedded into low-temperature cofired ceramic.
    Sobocinski M; Leinonen M; Juuti J; Jantunen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):1990-5. PubMed ID: 23007772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Low Temperature Drifting Acoustic Wave Pressure Sensor with an Integrated Vacuum Cavity for Absolute Pressure Sensing.
    Wang T; Tang Z; Lin H; Zhan K; Wan J; Wu S; Gu Y; Luo W; Zhang W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Passive Downhole Pressure Sensor Based on Surface Acoustic Wave Technology.
    Quintero SMM; Figueiredo SWO; Takahashi VL; Llerena RAW; Braga AMB
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28714892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.
    Halonen N; Kilpijärvi J; Sobocinski M; Datta-Chaudhuri T; Hassinen A; Prakash SB; Möller P; Abshire P; Kellokumpu S; Lloyd Spetz A
    Beilstein J Nanotechnol; 2016; 7():1871-1877. PubMed ID: 28144536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments.
    Ngo HD; Mukhopadhyay B; Ehrmann O; Lang KD
    Sensors (Basel); 2015 Aug; 15(8):20305-15. PubMed ID: 26295235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and Manufacturing of a Passive Pressure Sensor Based on LC Resonance.
    Zheng C; Li W; Li AL; Zhan Z; Wang LY; Sun DH
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404262
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.
    Yang J
    Sensors (Basel); 2013 Feb; 13(3):2719-34. PubMed ID: 23447006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves.
    Satarkar NS; Zhang W; Eitel RE; Hilt JZ
    Lab Chip; 2009 Jun; 9(12):1773-9. PubMed ID: 19495462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of Suspended PMMA-Graphene Membrane for High Sensitivity LC-MEMS Pressure Sensor.
    Yusof N; Bais B; Yunas J; Soin N; Majlis BY
    Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Voltage standing wave ratio reading circuit design for inductance capacitance wireless passive ammonia sensors.
    Liang X; Guo Y; Zhou T; Zhang L; Tan Q; Xiong J
    Rev Sci Instrum; 2021 Aug; 92(8):085003. PubMed ID: 34470398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An improved performance frequency estimation algorithm for passive wireless SAW resonant sensors.
    Liu B; Zhang C; Ji X; Chen J; Han T
    Sensors (Basel); 2014 Nov; 14(12):22261-73. PubMed ID: 25429410
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-temperature sensor instrumentation with a thin-film-based sapphire fiber.
    Guo Y; Xia W; Hu Z; Wang M
    Appl Opt; 2017 Mar; 56(8):2068-2073. PubMed ID: 28375289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.