BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25490599)

  • 1. Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement.
    Pena Luengas SL; Marin GH; Aviles K; Cruz Acuña R; Roque G; Rodríguez Nieto F; Sanchez F; Tarditi A; Rivera L; Mansilla E
    Cancer Biother Radiopharm; 2014 Dec; 29(10):435-43. PubMed ID: 25490599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.
    Yu J; Hsu CH; Huang CC; Chang PY
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational engineering of semiconductor QDs enabling remarkable
    Shen Y; Sun Y; Yan R; Chen E; Wang H; Ye D; Xu JJ; Chen HY
    Biomaterials; 2017 Dec; 148():31-40. PubMed ID: 28961533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale ZnO-based photosensitizers for photodynamic therapy.
    Yi C; Yu Z; Ren Q; Liu X; Wang Y; Sun X; Yin S; Pan J; Huang X
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101694. PubMed ID: 32109615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet oxygen production of Zn-Ag-In-S quantum dots for photodynamic treatment of cancer cells and bacteria.
    Sheng Y; Qing D; Li N; Zhang P; Sun Y; Zhang R
    J Biomater Appl; 2024 Aug; 39(2):129-138. PubMed ID: 38782577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of ZnS:Mn/ZnS core/shell nanoparticles for tumor targeting and imaging in vivo.
    Yu Z; Ma X; Yu B; Pan Y; Liu Z
    J Biomater Appl; 2013 Aug; 28(2):232-40. PubMed ID: 22532407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity.
    Kautzka Z; Clement S; Goldys EM; Deng W
    Int J Nanomedicine; 2017; 12():969-977. PubMed ID: 28203076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer.
    Conte C; Ungaro F; Maglio G; Tirino P; Siracusano G; Sciortino MT; Leone N; Palma G; Barbieri A; Arra C; Mazzaglia A; Quaglia F
    J Control Release; 2013 Apr; 167(1):40-52. PubMed ID: 23298613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell.
    Hosseinzadeh R; Khorsandi K
    Photodiagnosis Photodyn Ther; 2017 Jun; 18():284-294. PubMed ID: 28300724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania.
    Nadhman A; Nazir S; Khan MI; Arooj S; Bakhtiar M; Shahnaz G; Yasinzai M
    Free Radic Biol Med; 2014 Dec; 77():230-8. PubMed ID: 25266330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional MnCuInSe/ZnS quantum dots for bioimaging and photodynamic therapy.
    Irmania N; Dehvari K; Chang JY
    J Biomater Appl; 2022 Apr; 36(9):1617-1628. PubMed ID: 35184580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma.
    Sebak AA; Gomaa IEO; ElMeshad AN; AbdelKader MH
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():181-189. PubMed ID: 29885810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen.
    Ratanatawanate C; Chyao A; Balkus KJ
    J Am Chem Soc; 2011 Mar; 133(10):3492-7. PubMed ID: 21341648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon excitation nanoparticles for photodynamic therapy.
    Shen Y; Shuhendler AJ; Ye D; Xu JJ; Chen HY
    Chem Soc Rev; 2016 Dec; 45(24):6725-6741. PubMed ID: 27711672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-high FRET efficiency NaGdF
    Zhang W; Zhang X; Shen Y; Shi F; Song C; Liu T; Gao P; Lan B; Liu M; Wang S; Fan L; Lu H
    Biomaterials; 2018 Nov; 184():31-40. PubMed ID: 30195803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice.
    Yang Y; Lan J; Xu Z; Chen T; Zhao T; Cheng T; Shen J; Lv S; Zhang H
    Nanotoxicology; 2014 Feb; 8(1):107-16. PubMed ID: 23245670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular uptake and photodynamic activity of protein nanocages containing methylene blue photosensitizing drug.
    Yan F; Zhang Y; Kim KS; Yuan HK; Vo-Dinh T
    Photochem Photobiol; 2010; 86(3):662-6. PubMed ID: 20132513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc sulfide nanoparticles selectively induce cytotoxic and genotoxic effects on leukemic cells: involvement of reactive oxygen species and tumor necrosis factor alpha.
    Dash SK; Ghosh T; Roy S; Chattopadhyay S; Das D
    J Appl Toxicol; 2014 Nov; 34(11):1130-44. PubMed ID: 24477783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.