These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25490654)

  • 21. Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses.
    Yoon YZ; Cicuta P
    Opt Express; 2010 Mar; 18(7):7076-84. PubMed ID: 20389728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers.
    Sheu FW; Lan TK; Lin YC; Chen S; Ay C
    Opt Express; 2010 Jul; 18(14):14724-9. PubMed ID: 20639958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conical Refraction: new observations and a dual cone model.
    Sokolovskii GS; Carnegie DJ; Kalkandjiev TK; Rafailov EU
    Opt Express; 2013 May; 21(9):11125-31. PubMed ID: 23669969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards an integrated optical single aerosol particle lab.
    Horstmann M; Probst K; Fallnich C
    Lab Chip; 2012 Jan; 12(2):295-301. PubMed ID: 22105700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical trapping map of dielectric spheres.
    Muradoglu M; Ng TW
    Appl Opt; 2013 May; 52(15):3500-9. PubMed ID: 23736236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wave-vector and polarization dependence of conical refraction.
    Turpin A; Loiko YV; Kalkandjiev TK; Tomizawa H; Mompart J
    Opt Express; 2013 Feb; 21(4):4503-11. PubMed ID: 23481983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.
    Redding B; Pan YL
    Opt Lett; 2015 Jun; 40(12):2798-801. PubMed ID: 26076265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman tweezers and their application to the study of singly trapped eukaryotic cells.
    Snook RD; Harvey TJ; Correia Faria E; Gardner P
    Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay of vortex and non-vortex beam components in a variable two-crystal cascade conical refraction.
    Jalviste E; Peet V
    Opt Lett; 2018 Oct; 43(19):4566-4569. PubMed ID: 30272684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap.
    Meresman H; Wills JB; Summers M; McGloin D; Reid JP
    Phys Chem Chem Phys; 2009 Dec; 11(47):11333-9. PubMed ID: 20024402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the dual-cone nature of the conical refraction phenomenon.
    Turpin A; Loiko Y; Kalkandjiev TK; Tomizawa H; Mompart J
    Opt Lett; 2015 Apr; 40(8):1639-42. PubMed ID: 25872036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generating a three-dimensional dark focus from a single conically refracted light beam.
    Loiko YV; Turpin A; Kalkandjiev TK; Rafailov EU; Mompart J
    Opt Lett; 2013 Nov; 38(22):4648-51. PubMed ID: 24322096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical funneling and trapping of gold colloids in convergent laser beams.
    Königer A; Köhler W
    ACS Nano; 2012 May; 6(5):4400-9. PubMed ID: 22530733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam.
    Pan YL; Kalume A; Lenton ICD; Nieminen TA; Stilgoe AB; Rubinsztein-Dunlop H; Beresnev LA; Wang C; Santarpia JL
    Opt Express; 2019 Nov; 27(23):33061-33069. PubMed ID: 31878380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of a single-beam gradient-force optical trap for dielectric particles in air.
    Omori R; Kobayashi T; Suzuki A
    Opt Lett; 1997 Jun; 22(11):816-8. PubMed ID: 18185672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical modeling of optical levitation and trapping of the "stuck" particles with a pulsed optical tweezers.
    Deng JL; Wei Q; Wang YZ; Li YQ
    Opt Express; 2005 May; 13(10):3673-80. PubMed ID: 19495274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.