BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25490714)

  • 1. Amphipathic membrane-active peptides recognize and stabilize ruptured membrane pores: exploring cause and effect with coarse-grained simulations.
    Sun D; Forsman J; Woodward CE
    Langmuir; 2015 Jan; 31(2):752-61. PubMed ID: 25490714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: insights from coarse-grained molecular dynamics simulations.
    Gkeka P; Sarkisov L
    J Phys Chem B; 2010 Jan; 114(2):826-39. PubMed ID: 20028006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations suggest possible novel membrane pore structure.
    Vácha R; Frenkel D
    Langmuir; 2014 Feb; 30(5):1304-10. PubMed ID: 24059441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous formation of a barrel-stave pore in a coarse-grained model of the synthetic LS3 peptide and a DPPC lipid bilayer.
    Gkeka P; Sarkisov L
    J Phys Chem B; 2009 Jan; 113(1):6-8. PubMed ID: 19072238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores.
    Sun D; Forsman J; Woodward CE
    Langmuir; 2015 Sep; 31(34):9388-401. PubMed ID: 26267389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curvature effect and stabilize ruptured membrane of BAX derived peptide studied by molecular dynamics simulations.
    Jiang Z; Zhang H
    J Mol Graph Model; 2019 May; 88():152-159. PubMed ID: 30703689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-grained molecular dynamics of membrane semitoroidal pore formation in model lipid-peptide systems.
    Ermakova E; Kurbanov R; Zuev Y
    J Mol Graph Model; 2019 Mar; 87():1-10. PubMed ID: 30448729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational investigations of pore forming peptide assemblies in lipid bilayers.
    Frink LJ; Frischknecht AL
    Phys Rev Lett; 2006 Nov; 97(20):208701. PubMed ID: 17155725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of Aβ25-35 β-barrel-like oligomers with anionic lipid bilayer and resulting membrane leakage: an all-atom molecular dynamics study.
    Chang Z; Luo Y; Zhang Y; Wei G
    J Phys Chem B; 2011 Feb; 115(5):1165-74. PubMed ID: 21192698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores.
    Irudayam SJ; Berkowitz ML
    Biochim Biophys Acta; 2011 Sep; 1808(9):2258-66. PubMed ID: 21640071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers.
    Shenkarev ZO; Balandin SV; Trunov KI; Paramonov AS; Sukhanov SV; Barsukov LI; Arseniev AS; Ovchinnikova TV
    Biochemistry; 2011 Jul; 50(28):6255-65. PubMed ID: 21627330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melittin creates transient pores in a lipid bilayer: results from computer simulations.
    Santo KP; Irudayam SJ; Berkowitz ML
    J Phys Chem B; 2013 May; 117(17):5031-42. PubMed ID: 23534858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species.
    Song W; Wei G; Mousseau N; Derreumaux P
    J Phys Chem B; 2008 Apr; 112(14):4410-8. PubMed ID: 18341325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained simulations of hemolytic peptide δ-lysin interacting with a POPC bilayer.
    King MJ; Bennett AL; Almeida PF; Lee HS
    Biochim Biophys Acta; 2016 Dec; 1858(12):3182-3194. PubMed ID: 27720634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study.
    Woo HJ; Wallqvist A
    J Phys Chem B; 2011 Jun; 115(25):8122-9. PubMed ID: 21651300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.