These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25490885)

  • 1. Finding gene regulatory network candidates using the gene expression knowledge base.
    Venkatesan A; Tripathi S; Sanz de Galdeano A; Blondé W; Lægreid A; Mironov V; Kuiper M
    BMC Bioinformatics; 2014 Dec; 15(1):386. PubMed ID: 25490885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path2enet: generation of human pathway-derived networks in an expression specific context.
    Droste C; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):731. PubMed ID: 27801297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.
    Losko S; Heumann K
    Methods Mol Biol; 2017; 1613():403-423. PubMed ID: 28849570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative analysis of human omics data using biomolecular networks.
    Robinson JL; Nielsen J
    Mol Biosyst; 2016 Oct; 12(10):2953-64. PubMed ID: 27510223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying disease-causal genes using Semantic Web-based representation of integrated genomic and phenomic knowledge.
    Gudivada RC; Qu XA; Chen J; Jegga AG; Neumann EK; Aronow BJ
    J Biomed Inform; 2008 Oct; 41(5):717-29. PubMed ID: 18755295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical Utilization of OryzaExpress and Plant Omics Data Center Databases to Explore Gene Expression Networks in Oryza Sativa and Other Plant Species.
    Kudo T; Terashima S; Takaki Y; Nakamura Y; Kobayashi M; Yano K
    Methods Mol Biol; 2017; 1533():229-240. PubMed ID: 27987174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for elucidating regulatory networks based on prior information and expression data.
    Gevaert O; Van Vooren S; De Moor B
    Ann N Y Acad Sci; 2007 Dec; 1115():240-8. PubMed ID: 17925352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life sciences on the Semantic Web: the Neurocommons and beyond.
    Ruttenberg A; Rees JA; Samwald M; Marshall MS
    Brief Bioinform; 2009 Mar; 10(2):193-204. PubMed ID: 19282504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FunRich: An open access standalone functional enrichment and interaction network analysis tool.
    Pathan M; Keerthikumar S; Ang CS; Gangoda L; Quek CY; Williamson NA; Mouradov D; Sieber OM; Simpson RJ; Salim A; Bacic A; Hill AF; Stroud DA; Ryan MT; Agbinya JI; Mariadason JM; Burgess AW; Mathivanan S
    Proteomics; 2015 Aug; 15(15):2597-601. PubMed ID: 25921073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy of a network ensemble: definitions and applications to genomic data.
    Menichetti G; Remondini D
    Theor Biol Forum; 2014; 107(1-2):77-87. PubMed ID: 25936214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference.
    Chen G; Cairelli MJ; Kilicoglu H; Shin D; Rindflesch TC
    PLoS Comput Biol; 2014 Jun; 10(6):e1003666. PubMed ID: 24921649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network legos: building blocks of cellular wiring diagrams.
    Murali TM; Rivera CG
    J Comput Biol; 2008 Sep; 15(7):829-44. PubMed ID: 18707557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of coffee transcriptome networks based on gene annotation semantics.
    Castillo LF; Galeano N; Isaza GA; Gaitán A
    J Integr Bioinform; 2012 Jul; 9(3):205. PubMed ID: 22829576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks.
    D'Souza M; Sulakhe D; Wang S; Xie B; Hashemifar S; Taylor A; Dubchak I; Conrad Gilliam T; Maltsev N
    Methods Mol Biol; 2017; 1613():85-99. PubMed ID: 28849559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breeding and Genetics Symposium: building single nucleotide polymorphism-derived gene regulatory networks: Towards functional genomewide association studies.
    Reverter A; Fortes MR
    J Anim Sci; 2013 Feb; 91(2):530-6. PubMed ID: 23097399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The COPD Knowledge Base: enabling data analysis and computational simulation in translational COPD research.
    Cano I; Tényi Á; Schueller C; Wolff M; Huertas Migueláñez MM; Gomez-Cabrero D; Antczak P; Roca J; Cascante M; Falciani F; Maier D
    J Transl Med; 2014 Nov; 12 Suppl 2(Suppl 2):S6. PubMed ID: 25471253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miRNA-miRNA crosstalk: from genomics to phenomics.
    Xu J; Shao T; Ding N; Li Y; Li X
    Brief Bioinform; 2017 Nov; 18(6):1002-1011. PubMed ID: 27551063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KaBOB: ontology-based semantic integration of biomedical databases.
    Livingston KM; Bada M; Baumgartner WA; Hunter LE
    BMC Bioinformatics; 2015 Apr; 16(1):126. PubMed ID: 25903923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontological Discovery Environment: a system for integrating gene-phenotype associations.
    Baker EJ; Jay JJ; Philip VM; Zhang Y; Li Z; Kirova R; Langston MA; Chesler EJ
    Genomics; 2009 Dec; 94(6):377-87. PubMed ID: 19733230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.