These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25490891)

  • 1. Pumpless microfluidic platform for drug testing on human skin equivalents.
    Abaci HE; Gledhill K; Guo Z; Christiano AM; Shuler ML
    Lab Chip; 2015 Feb; 15(3):882-8. PubMed ID: 25490891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of α-Lipoic Acid on the Development of Human Skin Equivalents Using a Pumpless Skin-on-a-Chip Model.
    Kim K; Kim J; Kim H; Sung GY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review.
    Czyz CM; Kunth PW; Gruber F; Kremslehner C; Hammers CM; Hundt JE
    Exp Dermatol; 2023 Nov; 32(11):1870-1883. PubMed ID: 37605856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A programmable microfluidic cell array for combinatorial drug screening.
    Kim J; Taylor D; Agrawal N; Wang H; Kim H; Han A; Rege K; Jayaraman A
    Lab Chip; 2012 Apr; 12(10):1813-22. PubMed ID: 22456798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell transcriptomics of human-skin-equivalent organoids.
    Stabell AR; Lee GE; Jia Y; Wong KN; Wang S; Ling J; Nguyen SD; Sen GL; Nie Q; Atwood SX
    Cell Rep; 2023 May; 42(5):112511. PubMed ID: 37195865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen.
    Tan SH; Liu S; Teoh SH; Bonnard C; Leavesley D; Liang K
    Biomater Adv; 2024 Apr; 158():213780. PubMed ID: 38280287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multi-organ chip--a microfluidic platform for long-term multi-tissue coculture.
    Materne EM; Maschmeyer I; Lorenz AK; Horland R; Schimek KM; Busek M; Sonntag F; Lauster R; Marx U
    J Vis Exp; 2015 Apr; (98):e52526. PubMed ID: 25992921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications.
    Phan DTT; Wang X; Craver BM; Sobrino A; Zhao D; Chen JC; Lee LYN; George SC; Lee AP; Hughes CCW
    Lab Chip; 2017 Jan; 17(3):511-520. PubMed ID: 28092382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model.
    Jones CFE; Di Cio S; Connelly JT; Gautrot JE
    Front Bioeng Biotechnol; 2022; 10():915702. PubMed ID: 35928950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion.
    Ataç B; Wagner I; Horland R; Lauster R; Marx U; Tonevitsky AG; Azar RP; Lindner G
    Lab Chip; 2013 Sep; 13(18):3555-61. PubMed ID: 23674126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism.
    Ayuso JM; Sadangi S; Lares M; Rehman S; Humayun M; Denecke KM; Skala MC; Beebe DJ; Setaluri V
    Lab Chip; 2021 Mar; 21(6):1139-1149. PubMed ID: 33533390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of New Concepts in Skin Physiopathology through the Use of in vitro Human Skin Explants Models.
    Cousin I; Misery L; de Vries P; Lebonvallet N
    Dermatology; 2023; 239(6):849-859. PubMed ID: 37717565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin-on-a-Chip Technology for Testing Transdermal Drug Delivery-Starting Points and Recent Developments.
    Varga-Medveczky Z; Kocsis D; Naszlady MB; Fónagy K; Erdő F
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From static to dynamic: The influence of mechanotransduction on skin equivalents analyzed by bioimaging and RNAseq.
    Kaiser K; Bendixen SM; Sørensen JA; Brewer JR
    Mater Today Bio; 2024 Apr; 25():101010. PubMed ID: 38495916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed drug testing of tumor slices using a microfluidic platform.
    Horowitz LF; Rodriguez AD; Dereli-Korkut Z; Lin R; Castro K; Mikheev AM; Monnat RJ; Folch A; Rostomily RC
    NPJ Precis Oncol; 2020; 4():12. PubMed ID: 32435696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro micro-physiological immune-competent model of the human skin.
    Ramadan Q; Ting FC
    Lab Chip; 2016 May; 16(10):1899-908. PubMed ID: 27098052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Skin Constructs with Spatially Controlled Vasculature Using Primary and iPSC-Derived Endothelial Cells.
    Abaci HE; Guo Z; Coffman A; Gillette B; Lee WH; Sia SK; Christiano AM
    Adv Healthc Mater; 2016 Jul; 5(14):1800-7. PubMed ID: 27333469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.
    Maschmeyer I; Hasenberg T; Jaenicke A; Lindner M; Lorenz AK; Zech J; Garbe LA; Sonntag F; Hayden P; Ayehunie S; Lauster R; Marx U; Materne EM
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):77-87. PubMed ID: 25857839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin integrated with perfusable vascular channels on a chip.
    Mori N; Morimoto Y; Takeuchi S
    Biomaterials; 2017 Feb; 116():48-56. PubMed ID: 27914266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.
    Maschmeyer I; Lorenz AK; Schimek K; Hasenberg T; Ramme AP; Hübner J; Lindner M; Drewell C; Bauer S; Thomas A; Sambo NS; Sonntag F; Lauster R; Marx U
    Lab Chip; 2015 Jun; 15(12):2688-99. PubMed ID: 25996126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.