These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25491266)

  • 41. Adherence of Pseudomonas aeruginosa to inanimate polymers including biomaterials.
    Stone JH; Gabriel MM; Ahearn DG
    J Ind Microbiol Biotechnol; 1999 Jul; 23(1):713-7. PubMed ID: 10455507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
    Song F; Koo H; Ren D
    J Dent Res; 2015 Aug; 94(8):1027-34. PubMed ID: 26001706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities.
    Marcus IM; Herzberg M; Walker SL; Freger V
    Langmuir; 2012 Apr; 28(15):6396-402. PubMed ID: 22439703
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy.
    Lau PC; Dutcher JR; Beveridge TJ; Lam JS
    Biophys J; 2009 Apr; 96(7):2935-48. PubMed ID: 19348775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antifouling properties of layer by layer DNA coatings.
    Subbiahdoss G; Zeng G; Aslan H; Ege Friis J; Iruthayaraj J; Zelikin AN; Meyer RL
    Biofouling; 2019 Jan; 35(1):75-88. PubMed ID: 30821496
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
    Toutain CM; Caizza NC; Zegans ME; O'Toole GA
    Res Microbiol; 2007 Jun; 158(5):471-7. PubMed ID: 17533122
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Minimal attachment of
    Pingle H; Wang PY; Cavaliere R; Whitchurch CB; Thissen H; Kingshott P
    Biointerphases; 2018 Oct; 13(6):06E405. PubMed ID: 30326702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Morphological and chemical changes in the attached cells of Pseudomonas aeruginosa as primary biofilms develop on aluminium and CaF2 plates.
    Cheung HY; Chan GK; Cheung SH; Sun SQ; Fong WF
    J Appl Microbiol; 2007 Mar; 102(3):701-10. PubMed ID: 17309619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of quantification methods illustrates reduced Pseudomonas aeruginosa activity on nanorough polyvinyl chloride.
    Seil JT; Rubien NM; Webster TJ; Tarquinio KM
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):1-7. PubMed ID: 21634005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacteria slingshot more on soft surfaces.
    Zhang R; Ni L; Jin Z; Li J; Jin F
    Nat Commun; 2014 Nov; 5():5541. PubMed ID: 25412641
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces.
    Hsu LC; Fang J; Borca-Tasciuc DA; Worobo RW; Moraru CI
    Appl Environ Microbiol; 2013 Apr; 79(8):2703-12. PubMed ID: 23416997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of monomer-free, highly crosslinked, water-compatible polymers.
    Dailing EA; Lewis SH; Barros MD; Stansbury JW
    J Dent Res; 2014 Dec; 93(12):1326-31. PubMed ID: 25248612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness.
    Mitik-Dineva N; Wang J; Truong VK; Stoddart P; Malherbe F; Crawford RJ; Ivanova EP
    Curr Microbiol; 2009 Mar; 58(3):268-73. PubMed ID: 19020934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface charge modification decreases Pseudomonas aeruginosa adherence in vitro and bacterial persistence in an in vivo implant model.
    Kao WK; Gagnon PM; Vogel JP; Chole RA
    Laryngoscope; 2017 Jul; 127(7):1655-1661. PubMed ID: 28295372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.
    Alhede M; Kragh KN; Qvortrup K; Allesen-Holm M; van Gennip M; Christensen LD; Jensen PØ; Nielsen AK; Parsek M; Wozniak D; Molin S; Tolker-Nielsen T; Høiby N; Givskov M; Bjarnsholt T
    PLoS One; 2011; 6(11):e27943. PubMed ID: 22132176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantifying Pseudomonas aeruginosa adhesion to contact lenses.
    Dang YN; Rao A; Kastl PR; Blake RC; Schurr MJ; Blake DA
    Eye Contact Lens; 2003 Apr; 29(2):65-8. PubMed ID: 12695704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of shear on initial bacterial attachment in slow flowing systems.
    Wang H; Sodagari M; Ju LK; Zhang Newby BM
    Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial adhesion: seen any good biofilms lately?
    Dunne WM
    Clin Microbiol Rev; 2002 Apr; 15(2):155-66. PubMed ID: 11932228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm.
    Tribedi P; Sil AK
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):4146-53. PubMed ID: 23242625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of the exopolysaccharides Pel and Psl on the initial adhesion of Pseudomonas aeruginosa to sand.
    Tian L; Xu S; Hutchins WC; Yang CH; Li J
    Biofouling; 2014 Feb; 30(2):213-22. PubMed ID: 24404893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.