BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25491508)

  • 1. New peak broadening parameter for the characterization of separation capability in capillary electrophoresis.
    Sursyakova VV; Rubaylo AI
    J Sep Sci; 2015 Feb; 38(4):690-6. PubMed ID: 25491508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice.
    Hjertén S
    Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of effective mobilities and chiral separation selectivities from partially separated enantiomer peaks in a racemic mixture using pressure-mediated capillary electrophoresis.
    Williams BA; Vigh G
    Anal Chem; 1997 Nov; 69(21):4410-8. PubMed ID: 21639173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Porras SP; Riekkola ML
    Electrophoresis; 2004 Jan; 25(2):344-54. PubMed ID: 14743487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy for non-target ionic analysis by capillary electrophoresis with ultraviolet detection.
    Sursyakova VV; Burmakina GV; Rubaylo AI
    Anal Bioanal Chem; 2017 Feb; 409(4):1067-1077. PubMed ID: 27796454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the peak broadening due to detection in the electrophoretic separation of DNA by CE and microchip CE and the application of image sensor for ultra-small detection cell length.
    Ni Y; Zhao Y; Chen Q; Yamaguchi Y; Dou X
    J Sep Sci; 2019 Jul; 42(13):2280-2288. PubMed ID: 31038284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Step width, spacing, and resolution in gradient elution moving boundary electrophoresis. Part 1. Theory and comparison with zone electrophoresis.
    Ross D
    Electrophoresis; 2010 Nov; 31(22):3650-7. PubMed ID: 21077236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary electrophoresis separation of vinpocetine and related compounds: prediction of electrophoretic mobilities in partly aqueous media.
    Mazák K; Szakács Z; Nemes A; Noszál B
    Electrophoresis; 2000 Jul; 21(12):2417-23. PubMed ID: 10939454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
    Walhagen K; Huber MI; Hennessy TP; Hearn MT
    Biopolymers; 2003; 71(4):429-53. PubMed ID: 14517897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation and characterization of sub-microm- and microm-sized particles by capillary zone electrophoresis.
    Radko SP; Chrambach A
    Electrophoresis; 2002 Jul; 23(13):1957-72. PubMed ID: 12210247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-conductivity background electrolytes in capillary zone electrophoresis--myth or reality?
    Horká M; Slais K
    Electrophoresis; 2000 Aug; 21(14):2814-27. PubMed ID: 11001288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of the pH of the background electrolyte due to electrode reactions in capillary electrophoresis: theoretical approach and in situ measurement.
    Corstjens H; Billiet HA; Frank J; Luyben KC
    Electrophoresis; 1996 Jan; 17(1):137-43. PubMed ID: 8907531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental design optimization of the capillary electrophoresis separation of leucine enkephalin and its immune complex.
    Babar SM; Song EJ; Hasan MN; Yoo YS
    J Sep Sci; 2007 Sep; 30(14):2311-9. PubMed ID: 17688300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Migration Model for Micellar Capillary Electrophoresis and Its Application to the Separation of Anionic Metal Complexes of HEDTC and CDTA.
    Breadmore MC; Macka M; Haddad PR
    Anal Chem; 1999 May; 71(9):1826-33. PubMed ID: 21662822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.