BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25491532)

  • 1. Effects of synthetic alkamides on Arabidopsis fatty acid amide hydrolase activity and plant development.
    Faure L; Cavazos R; Khan BR; Petros RA; Koulen P; Blancaflor EB; Chapman KD
    Phytochemistry; 2015 Feb; 110():58-71. PubMed ID: 25491532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of phenoxyacyl-ethanolamides and their effects on fatty acid amide hydrolase activity.
    Faure L; Nagarajan S; Hwang H; Montgomery CL; Khan BR; John G; Koulen P; Blancaflor EB; Chapman KD
    J Biol Chem; 2014 Mar; 289(13):9340-51. PubMed ID: 24558037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of fatty acid amide hydrolase activity in plants.
    Kim SC; Faure L; Chapman KD
    Methods Mol Biol; 2013; 1009():115-27. PubMed ID: 23681529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoxygenase-derived 9-hydro(pero)xides of linoleoylethanolamide interact with ABA signaling to arrest root development during Arabidopsis seedling establishment.
    Keereetaweep J; Blancaflor EB; Hornung E; Feussner I; Chapman KD
    Plant J; 2015 Apr; 82(2):315-27. PubMed ID: 25752187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines.
    Wang YS; Shrestha R; Kilaru A; Wiant W; Venables BJ; Chapman KD; Blancaflor EB
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12197-202. PubMed ID: 16880402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoxygenase-mediated oxidation of polyunsaturated N-acylethanolamines in Arabidopsis.
    Kilaru A; Herrfurth C; Keereetaweep J; Hornung E; Venables BJ; Feussner I; Chapman KD
    J Biol Chem; 2011 Apr; 286(17):15205-14. PubMed ID: 21372125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-acylethanolamine-mediated regulatory pathway in plants.
    Kilaru A; Blancaflor EB; Venables BJ; Tripathy S; Mysore KS; Chapman KD
    Chem Biodivers; 2007 Aug; 4(8):1933-55. PubMed ID: 17712835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines.
    Kilaru A; Tamura P; Isaac G; Welti R; Venables BJ; Seier E; Chapman KD
    Planta; 2012 Sep; 236(3):809-24. PubMed ID: 22673881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA).
    Ueda N; Tsuboi K; Uyama T
    Prog Lipid Res; 2010 Oct; 49(4):299-315. PubMed ID: 20152858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines.
    Mulder AM; Cravatt BF
    Biochemistry; 2006 Sep; 45(38):11267-77. PubMed ID: 16981687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
    Alhouayek M; Bottemanne P; Makriyannis A; Muccioli GG
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 May; 1862(5):474-484. PubMed ID: 28065729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2.
    Kaczocha M; Glaser ST; Chae J; Brown DA; Deutsch DG
    J Biol Chem; 2010 Jan; 285(4):2796-806. PubMed ID: 19926788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis.
    Khan BR; Faure L; Chapman KD; Blancaflor EB
    Sci Rep; 2017 Jan; 7():41121. PubMed ID: 28112243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant fatty acid (ethanol) amide hydrolases.
    Shrestha R; Kim SC; Dyer JM; Dixon RA; Chapman KD
    Biochim Biophys Acta; 2006 Mar; 1761(3):324-34. PubMed ID: 16624618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Acylethanolamines: lipid metabolites with functions in plant growth and development.
    Blancaflor EB; Kilaru A; Keereetaweep J; Khan BR; Faure L; Chapman KD
    Plant J; 2014 Aug; 79(4):568-83. PubMed ID: 24397856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication?
    Aziz M; Chapman KD
    Trends Plant Sci; 2020 Mar; 25(3):236-249. PubMed ID: 31919033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana.
    Shrestha R; Dixon RA; Chapman KD
    J Biol Chem; 2003 Sep; 278(37):34990-7. PubMed ID: 12824167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkamides isolated from plants promote growth and alter root development in Arabidopsis.
    Ramírez-Chávez E; López-Bucio J; Herrera-Estrella L; Molina-Torres J
    Plant Physiol; 2004 Mar; 134(3):1058-68. PubMed ID: 14988477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase.
    Hayes AC; Stupak J; Li J; Cox AD
    J Lipid Res; 2013 Feb; 54(2):457-66. PubMed ID: 23187822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based design of a FAAH variant that discriminates between the N-acyl ethanolamine and taurine families of signaling lipids.
    McKinney MK; Cravatt BF
    Biochemistry; 2006 Aug; 45(30):9016-22. PubMed ID: 16866346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.