These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 25491650)

  • 1. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.
    Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM
    ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process.
    Gregorczyk KE; Kozen AC; Chen X; Schroeder MA; Noked M; Cao A; Hu L; Rubloff GW
    ACS Nano; 2015 Jan; 9(1):464-73. PubMed ID: 25517036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes.
    Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW
    ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries.
    Ban C; Xie M; Sun X; Travis JJ; Wang G; Sun H; Dillon AC; Lian J; George SM
    Nanotechnology; 2013 Oct; 24(42):424002. PubMed ID: 24067324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes.
    Liu H; Li W; Shen D; Zhao D; Wang G
    J Am Chem Soc; 2015 Oct; 137(40):13161-6. PubMed ID: 26414170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries.
    Gao H; Wu Q; Hu Y; Zheng JP; Amine K; Chen Z
    J Phys Chem Lett; 2018 Sep; 9(17):5100-5104. PubMed ID: 30130117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.
    Fei L; Xu Y; Wu X; Chen G; Li Y; Li B; Deng S; Smirnov S; Fan H; Luo H
    Nanoscale; 2014 Apr; 6(7):3664-9. PubMed ID: 24567121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries.
    Hao B; Yan Y; Wang X; Chen G
    Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.
    Liu D; Yang Z; Wang P; Li F; Wang D; He D
    Nanoscale; 2013 Mar; 5(5):1917-21. PubMed ID: 23354412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries.
    Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS
    Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.
    Yang Y; Chen D; Liu B; Zhao J
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7497-504. PubMed ID: 25816108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-Scale Simulations of Porous Electrodes of Li-O
    Wang F; Li X
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26222-26232. PubMed ID: 30009605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.
    Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M
    Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries.
    Tang Y; Zhang Y; Deng J; Qi D; Leow WR; Wei J; Yin S; Dong Z; Yazami R; Chen Z; Chen X
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13488-92. PubMed ID: 25168684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification.
    Meng X
    Nanotechnology; 2015 Jan; 26(2):020501. PubMed ID: 25514439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition.
    Liu J; Sun X
    Nanotechnology; 2015 Jan; 26(2):024001. PubMed ID: 25514580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.