These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25491814)

  • 21. A rapid, in situ gelable hydrogel composed of teleostean and alginate.
    Zhang H; Liao H; Chen W
    J Biomater Sci Polym Ed; 2009; 20(13):1915-28. PubMed ID: 19793447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogel Nanocomposites with Independently Tunable Rheology and Mechanics.
    Unterman S; Charles LF; Strecker SE; Kramarenko D; Pivovarchik D; Edelman ER; Artzi N
    ACS Nano; 2017 Mar; 11(3):2598-2610. PubMed ID: 28221760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional hydrogels based on oxidized pectin and gelatin for wound healing improvement.
    Chetouani A; Elkolli M; Haffar H; Chader H; Riahi F; Varacavoudin T; Le Cerf D
    Int J Biol Macromol; 2022 Jul; 212():248-256. PubMed ID: 35577187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formulation and characterization of hydrogel based on pectin and brea gum.
    Slavutsky AM; Bertuzzi MA
    Int J Biol Macromol; 2019 Feb; 123():784-791. PubMed ID: 30414901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels.
    Gelli R; Del Buffa S; Tempesti P; Bonini M; Ridi F; Baglioni P
    J Colloid Interface Sci; 2018 Feb; 511():145-154. PubMed ID: 29017100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine.
    Diba M; Polini A; Petre DG; Zhang Y; Leeuwenburgh SCG
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():143-150. PubMed ID: 30184737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polysaccharide-based hydrogels with tunable composition as 3D cell culture systems.
    Gentilini R; Munarin F; Bloise N; Secchi E; Visai L; Tanzi MC; Petrini P
    Int J Artif Organs; 2018 Apr; 41(4):213-222. PubMed ID: 29637833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials.
    Ramin MA; Latxague L; Sindhu KR; Chassande O; Barthélémy P
    Biomaterials; 2017 Nov; 145():72-80. PubMed ID: 28850933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review.
    Noreen A; Nazli ZI; Akram J; Rasul I; Mansha A; Yaqoob N; Iqbal R; Tabasum S; Zuber M; Zia KM
    Int J Biol Macromol; 2017 Aug; 101():254-272. PubMed ID: 28300586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: synthesis and characterization.
    Sacco P; Borgogna M; Travan A; Marsich E; Paoletti S; Asaro F; Grassi M; Donati I
    Biomacromolecules; 2014 Sep; 15(9):3396-405. PubMed ID: 25133954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances and prospects in the food applications of pectin hydrogels.
    Ishwarya S P; R S; Nisha P
    Crit Rev Food Sci Nutr; 2022; 62(16):4393-4417. PubMed ID: 33511846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical Properties of Composite Hydrogels for Tissue Engineering.
    Rial R; Soltero JFA; Verdes PV; Liu Z; Ruso JM
    Curr Top Med Chem; 2018; 18(14):1214-1223. PubMed ID: 30095056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterning surface by site selective capture of biopolymer hydrogel beads.
    Guyomard-Lack A; Moreau C; Delorme N; Marquis M; Fang A; Bardeau JF; Cathala B
    Colloids Surf B Biointerfaces; 2012 Jun; 94():369-73. PubMed ID: 22326339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-Based Hydrogels Composed of Humic Matter and Pectins of Different Degree of Methyl-Esterification.
    Nuzzo A; Mazzei P; Savy D; Di Meo V; Piccolo A
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32630609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles.
    García-Astrain C; Chen C; Burón M; Palomares T; Eceiza A; Fruk L; Corcuera MÁ; Gabilondo N
    Biomacromolecules; 2015 Apr; 16(4):1301-10. PubMed ID: 25785360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances on biomedical applications of pectin-containing biomaterials.
    Eivazzadeh-Keihan R; Noruzi EB; Aliabadi HAM; Sheikhaleslami S; Akbarzadeh AR; Hashemi SM; Gorab MG; Maleki A; Cohan RA; Mahdavi M; Poodat R; Keyvanlou F; Esmaeili MS
    Int J Biol Macromol; 2022 Sep; 217():1-18. PubMed ID: 35809676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering.
    Shu XZ; Ahmad S; Liu Y; Prestwich GD
    J Biomed Mater Res A; 2006 Dec; 79(4):902-12. PubMed ID: 16941590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maltose-conjugated chitosans induce macroscopic gelation of pectin solutions at neutral pH.
    Giacomazza D; Sabatino MA; Catena A; Leone M; San Biagio PL; Dispenza C
    Carbohydr Polym; 2014 Dec; 114():141-148. PubMed ID: 25263874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.