These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25491835)

  • 1. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation.
    Thomas M; Arora A; Katti DS
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():320-32. PubMed ID: 25491835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).
    Zhang P; Hong Z; Yu T; Chen X; Jing X
    Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CaSiO₃ microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres.
    Wu C; Zhang Y; Fan W; Ke X; Hu X; Zhou Y; Xiao Y
    J Biomed Mater Res A; 2011 Jul; 98(1):122-31. PubMed ID: 21548064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering.
    Meng ZX; Li HF; Sun ZZ; Zheng W; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):699-706. PubMed ID: 25427476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of proteins adsorbed on hydrophilized polylactide-co-glycolide microfibers.
    Vasita R; Katti DS
    Int J Nanomedicine; 2012; 7():61-71. PubMed ID: 22275823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography.
    Duan S; Yang X; Mao J; Qi B; Cai Q; Shen H; Yang F; Deng X; Wang S
    J Biomed Mater Res A; 2013 Feb; 101(2):307-17. PubMed ID: 22733644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro.
    Sreerekha PR; Menon D; Nair SV; Chennazhi KP
    Tissue Eng Part A; 2013 Apr; 19(7-8):849-59. PubMed ID: 23083104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fabrication of biomineralized fiber-aligned PLGA scaffolds and their effect on enhancing osteogenic differentiation of UCMSC cells.
    Li W; Yang X; Feng S; Yang S; Zeng R; Tu M
    J Mater Sci Mater Med; 2018 Jul; 29(8):117. PubMed ID: 30027312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning.
    Ravichandran R; Ng CCh; Liao S; Pliszka D; Raghunath M; Ramakrishna S; Chan CK
    Biomed Mater; 2012 Feb; 7(1):015001. PubMed ID: 22156014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
    Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT
    J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells.
    Hild N; Schneider OD; Mohn D; Luechinger NA; Koehler FM; Hofmann S; Vetsch JR; Thimm BW; Müller R; Stark WJ
    Nanoscale; 2011 Feb; 3(2):401-9. PubMed ID: 21060938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically stimulated osteogenesis on Ti-PPy/PLGA constructs prepared by laser-assisted processes.
    Paun IA; Stokker-Cheregi F; Luculescu CR; Acasandrei AM; Ion V; Zamfirescu M; Mustaciosu CC; Mihailescu M; Dinescu M
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():61-9. PubMed ID: 26117739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1139-54. PubMed ID: 27120980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering.
    Kim J; Jeong SY; Ju YM; Yoo JJ; Smith TL; Khang G; Lee SJ; Atala A
    Biomed Mater; 2013 Feb; 8(1):014107. PubMed ID: 23353783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New PLGA-P188-PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells.
    Morille M; Van-Thanh T; Garric X; Cayon J; Coudane J; Noël D; Venier-Julienne MC; Montero-Menei CN
    J Control Release; 2013 Aug; 170(1):99-110. PubMed ID: 23648834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.
    Karaman O; Kumar A; Moeinzadeh S; He X; Cui T; Jabbari E
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E132-46. PubMed ID: 23897753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration.
    Lee YJ; Lee JH; Cho HJ; Kim HK; Yoon TR; Shin H
    Biomaterials; 2013 Jul; 34(21):5059-69. PubMed ID: 23578562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.