These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 25491872)
1. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Li Z; Tan BH Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():620-34. PubMed ID: 25491872 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. Aryal S; Prabaharan M; Pilla S; Gong S Int J Biol Macromol; 2009 May; 44(4):346-52. PubMed ID: 19428465 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
4. Biophysical characterization of hyper-branched polyethylenimine-graft-polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy-PEI-PCL-mPEG) for siRNA delivery. Liu Y; Samsonova O; Sproat B; Merkel O; Kissel T J Control Release; 2011 Aug; 153(3):262-8. PubMed ID: 21549166 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Wei X; Gong C; Gou M; Fu S; Guo Q; Shi S; Luo F; Guo G; Qiu L; Qian Z Int J Pharm; 2009 Oct; 381(1):1-18. PubMed ID: 19664700 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Xiong XB; Uludağ H; Lavasanifar A Biomaterials; 2009 Jan; 30(2):242-53. PubMed ID: 18838158 [TBL] [Abstract][Full Text] [Related]
7. DNA block copolymers: functional materials for nanoscience and biomedicine. Schnitzler T; Herrmann A Acc Chem Res; 2012 Sep; 45(9):1419-30. PubMed ID: 22726237 [TBL] [Abstract][Full Text] [Related]
8. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Wang H; Yang Z Nanoscale; 2012 Sep; 4(17):5259-67. PubMed ID: 22814874 [TBL] [Abstract][Full Text] [Related]
9. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers. Xu L; Zhang Z; Wang F; Xie D; Yang S; Wang T; Feng L; Chu C J Colloid Interface Sci; 2013 Mar; 393():174-81. PubMed ID: 23211870 [TBL] [Abstract][Full Text] [Related]
11. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Wang JZ; You ML; Ding ZQ; Ye WB Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1021-1035. PubMed ID: 30678893 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances of Poly(ether-ether) and Poly(ether-ester) Block Copolymers in Biomedical Applications. He ZY; Shi K; Wei YQ; Qian ZY Curr Drug Metab; 2016; 17(2):168-86. PubMed ID: 26526833 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. Vassiliou AA; Papadimitriou SA; Bikiaris DN; Mattheolabakis G; Avgoustakis K J Control Release; 2010 Dec; 148(3):388-95. PubMed ID: 20869413 [TBL] [Abstract][Full Text] [Related]
15. Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer. Dash TK; Konkimalla VB Mol Pharm; 2012 Sep; 9(9):2365-79. PubMed ID: 22823097 [TBL] [Abstract][Full Text] [Related]
16. Block copolymer micelles: preparation, characterization and application in drug delivery. Gaucher G; Dufresne MH; Sant VP; Kang N; Maysinger D; Leroux JC J Control Release; 2005 Dec; 109(1-3):169-88. PubMed ID: 16289422 [TBL] [Abstract][Full Text] [Related]
17. Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery. Nuhn L; Hirsch M; Krieg B; Koynov K; Fischer K; Schmidt M; Helm M; Zentel R ACS Nano; 2012 Mar; 6(3):2198-214. PubMed ID: 22381078 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A(14)B(7) Miktoarm star copolymers based on poly(epsilon-caprolactone) and poly(ethylene glycol). Gou PF; Zhu WP; Shen ZQ Biomacromolecules; 2010 Apr; 11(4):934-43. PubMed ID: 20225892 [TBL] [Abstract][Full Text] [Related]
19. Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems. Xiong XY; Tam KC; Gan LH J Nanosci Nanotechnol; 2006; 6(9-10):2638-50. PubMed ID: 17048472 [TBL] [Abstract][Full Text] [Related]
20. Photoresponsive hydrogels for biomedical applications. Tomatsu I; Peng K; Kros A Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1257-66. PubMed ID: 21745509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]