BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25491876)

  • 1. The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine.
    Jin G; Li K
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():671-81. PubMed ID: 25491876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche.
    Bai R; Liu J; Zhang J; Shi J; Jin Z; Li Y; Ding X; Zhu X; Yuan C; Xiu B; Liu H; Yuan Z; Liu Z
    J Nanobiotechnology; 2021 Aug; 19(1):252. PubMed ID: 34425841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research progress of neural tissue engineering based on electrically conductive carbon nanotube scaffold].
    Xiang N; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Nov; 25(11):1389-92. PubMed ID: 22229201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-Based Materials in Regenerative Medicine.
    Ding X; Liu H; Fan Y
    Adv Healthc Mater; 2015 Jul; 4(10):1451-68. PubMed ID: 26037920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering physical microenvironment for stem cell based regenerative medicine.
    Han YL; Wang S; Zhang X; Li Y; Huang G; Qi H; Pingguan-Murphy B; Li Y; Lu TJ; Xu F
    Drug Discov Today; 2014 Jun; 19(6):763-73. PubMed ID: 24508818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Important contribution and necessity of stem cells scaffolds for regenerative medicine and the therapeutic applications].
    Tabata Y
    Nihon Rinsho; 2008 May; 66(5):881-6. PubMed ID: 18464505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes.
    Sun Y; Liu X; George MN; Park S; Gaihre B; Terzic A; Lu L
    J Biomed Mater Res A; 2021 Feb; 109(2):193-206. PubMed ID: 32441388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic microenvironment and multiple damaged tissue regeneration in a de novo and synchronized manner.
    Cheng B; Fu X
    Sci China Life Sci; 2016 Dec; 59(12):1332-1334. PubMed ID: 27909847
    [No Abstract]   [Full Text] [Related]  

  • 10. Bioengineered Scaffolds for Stem Cell Applications in Tissue Engineering and Regenerative Medicine.
    Rahmati M; Pennisi CP; Mobasheri A; Mozafari M
    Adv Exp Med Biol; 2018; 1107():73-89. PubMed ID: 29767291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene based scaffolds effects on stem cells commitment.
    Bressan E; Ferroni L; Gardin C; Sbricoli L; Gobbato L; Ludovichetti FS; Tocco I; Carraro A; Piattelli A; Zavan B
    J Transl Med; 2014 Oct; 12():296. PubMed ID: 25344443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive Polymers: Opportunities and Challenges in Biomedical Applications.
    Nezakati T; Seifalian A; Tan A; Seifalian AM
    Chem Rev; 2018 Jul; 118(14):6766-6843. PubMed ID: 29969244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation.
    Nayak TR; Jian L; Phua LC; Ho HK; Ren Y; Pastorin G
    ACS Nano; 2010 Dec; 4(12):7717-25. PubMed ID: 21117641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.
    Cosson S; Otte EA; Hezaveh H; Cooper-White JJ
    Stem Cells Transl Med; 2015 Feb; 4(2):156-64. PubMed ID: 25575526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration.
    Mitsiadis TA; Woloszyk A; Jiménez-Rojo L
    Nanomedicine (Lond); 2012 Nov; 7(11):1743-53. PubMed ID: 23210714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineering of skin and soft tissue augmentation, medical view.
    Hanpanich BS
    J Med Assoc Thai; 2010 Dec; 93 Suppl 7():S332-6. PubMed ID: 21294434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration.
    Lekshmi G; Sana SS; Nguyen VH; Nguyen THC; Nguyen CC; Le QV; Peng W
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Baharvand H; Kiani S; Al-Deyab SS; Ramakrishna S
    J Tissue Eng Regen Med; 2011 Apr; 5(4):e17-35. PubMed ID: 21413155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Based Materials in Neural Tissue Regeneration.
    Aydin T; Gurcan C; Taheri H; Yilmazer A
    Adv Exp Med Biol; 2018; 1107():129-142. PubMed ID: 29882208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.
    Guo R; Zhang S; Xiao M; Qian F; He Z; Li D; Zhang X; Li H; Yang X; Wang M; Chai R; Tang M
    Biomaterials; 2016 Nov; 106():193-204. PubMed ID: 27566868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.