These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 25491980)
1. Influence of different types of carbon nanotubes on muscle cell response. Fraczek-Szczypta A; Menaszek E; Blazewicz S; Adu J; Shevchenko R; Syeda TB; Misra A; Alavijeh M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():218-25. PubMed ID: 25491980 [TBL] [Abstract][Full Text] [Related]
2. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Sato Y; Yokoyama A; Shibata K; Akimoto Y; Ogino S; Nodasaka Y; Kohgo T; Tamura K; Akasaka T; Uo M; Motomiya K; Jeyadevan B; Ishiguro M; Hatakeyama R; Watari F; Tohji K Mol Biosyst; 2005 Jul; 1(2):176-82. PubMed ID: 16880981 [TBL] [Abstract][Full Text] [Related]
3. Carbon nanotubes for delivery of small molecule drugs. Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402 [TBL] [Abstract][Full Text] [Related]
4. Covalent Functionalization of Multi-Walled Carbon Nanotubes Surface via Chemical Treatment. Kim MU; Lee JM; Roh HG; Kang HJ; Park SH; Oh SJ; Lee JS; Park JS J Nanosci Nanotechnol; 2017 Apr; 17(4):2463-470. PubMed ID: 29648764 [TBL] [Abstract][Full Text] [Related]
5. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Liu X; Zhang Y; Ma D; Tang H; Tan L; Xie Q; Yao S Colloids Surf B Biointerfaces; 2013 Nov; 111():224-31. PubMed ID: 23831590 [TBL] [Abstract][Full Text] [Related]
7. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
8. Titanium coated with functionalized carbon nanotubes--a promising novel material for biomedical application as an implantable orthopaedic electronic device. Przekora A; Benko A; Nocun M; Wyrwa J; Blazewicz M; Ginalska G Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():287-96. PubMed ID: 25491831 [TBL] [Abstract][Full Text] [Related]
9. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. Begum P; Fugetsu B J Hazard Mater; 2012 Dec; 243():212-22. PubMed ID: 23146354 [TBL] [Abstract][Full Text] [Related]
11. On the influence of various physicochemical properties of the CNTs based implantable devices on the fibroblasts' reaction in vitro. Benko A; Frączek-Szczypta A; Menaszek E; Wyrwa J; Nocuń M; Błażewicz M J Mater Sci Mater Med; 2015 Nov; 26(11):262. PubMed ID: 26464119 [TBL] [Abstract][Full Text] [Related]
12. Multi and single walled carbon nanotubes: effects on cell responses and biomineralization of osteoblasts cultures. Zancanela DC; de Faria AN; Simão AM; Gonçalves RR; Ramos AP; Ciancaglini P J Mater Sci Mater Med; 2016 Mar; 27(3):62. PubMed ID: 26800693 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical determinants of multiwalled carbon nanotubes on cellular toxicity: influence of a synthetic method and post-treatment. Kim JE; Kang SH; Moon Y; Chae JJ; Lee AY; Lee JH; Yu KN; Jeong DH; Choi M; Cho MH Chem Res Toxicol; 2014 Feb; 27(2):290-303. PubMed ID: 24405247 [TBL] [Abstract][Full Text] [Related]
14. Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages. Zhang T; Tang M; Kong L; Li H; Zhang T; Zhang S; Xue Y; Pu Y J Hazard Mater; 2012 Jun; 219-220():203-12. PubMed ID: 22534157 [TBL] [Abstract][Full Text] [Related]
15. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples. Herrera-Herrera AV; Hernández-Borges J; Afonso MM; Palenzuela JA; Rodríguez-Delgado MÁ Talanta; 2013 Nov; 116():695-703. PubMed ID: 24148463 [TBL] [Abstract][Full Text] [Related]
16. Capture of bacteria by flexible carbon nanotubes. Akasaka T; Watari F Acta Biomater; 2009 Feb; 5(2):607-12. PubMed ID: 18823828 [TBL] [Abstract][Full Text] [Related]
17. Covalent conjugation of multi-walled carbon nanotubes with proteins. Yi C; Qi S; Zhang D; Yang M Methods Mol Biol; 2010; 625():9-17. PubMed ID: 20422377 [TBL] [Abstract][Full Text] [Related]
18. Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes. Hu C; Hu S Langmuir; 2008 Aug; 24(16):8890-7. PubMed ID: 18630937 [TBL] [Abstract][Full Text] [Related]
19. High-sensitivity matrix-assisted laser desorption/ionization Fourier transform mass spectrometry analyses of small carbohydrates and amino acids using oxidized carbon nanotubes prepared by chemical vapor deposition as matrix. Wang CH; Li J; Yao SJ; Guo YL; Xia XH Anal Chim Acta; 2007 Dec; 604(2):158-64. PubMed ID: 17996537 [TBL] [Abstract][Full Text] [Related]