BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25491993)

  • 1. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network.
    Luo C; Xu G; Wang X; Tu M; Zeng R; Rong J; Zhao J
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():316-24. PubMed ID: 25491993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network.
    Luo C; Zhao J; Tu M; Zeng R; Rong J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():301-8. PubMed ID: 24433916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mechanical and swelling properties of maleated hyaluronic acid hydrogels.
    Lin H; Liu J; Zhang K; Fan Y; Zhang X
    Carbohydr Polym; 2015 Jun; 123():381-9. PubMed ID: 25843871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide.
    Gřundělová L; Gregorova A; Mráček A; Vícha R; Smolka P; Minařík A
    Carbohydr Polym; 2015 Mar; 119():142-8. PubMed ID: 25563954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function.
    Hirakura T; Yasugi K; Nemoto T; Sato M; Shimoboji T; Aso Y; Morimoto N; Akiyoshi K
    J Control Release; 2010 Mar; 142(3):483-9. PubMed ID: 19951730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan.
    Weng L; Gouldstone A; Wu Y; Chen W
    Biomaterials; 2008 May; 29(14):2153-63. PubMed ID: 18272215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-cross-linked hydrogels from thermoresponsive PEGMEMA-PPGMA-EGDMA copolymers containing multiple methacrylate groups: mechanical property, swelling, protein release, and cytotoxicity.
    Tai H; Howard D; Takae S; Wang W; Vermonden T; Hennink WE; Stayton PS; Hoffman AS; Endruweit A; Alexander C; Howdle SM; Shakesheff KM
    Biomacromolecules; 2009 Oct; 10(10):2895-903. PubMed ID: 19746967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli.
    Zhang F; Wu J; Kang D; Zhang H
    J Biomater Sci Polym Ed; 2013; 24(12):1410-25. PubMed ID: 23829455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological characterization of in situ cross-linkable hyaluronan hydrogels.
    Ghosh K; Shu XZ; Mou R; Lombardi J; Prestwich GD; Rafailovich MH; Clark RA
    Biomacromolecules; 2005; 6(5):2857-65. PubMed ID: 16153128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels.
    Jejurikar A; Lawrie G; Martin D; Grøndahl L
    Biomed Mater; 2011 Apr; 6(2):025010. PubMed ID: 21436510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties.
    Bencherif SA; Srinivasan A; Horkay F; Hollinger JO; Matyjaszewski K; Washburn NR
    Biomaterials; 2008 Apr; 29(12):1739-49. PubMed ID: 18234331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.
    Molinos M; Carvalho V; Silva DM; Gama FM
    Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release.
    Mandal BB; Kapoor S; Kundu SC
    Biomaterials; 2009 May; 30(14):2826-36. PubMed ID: 19203791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(hydroxyethyl methacrylate-co-methacrylated-beta-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties.
    dos Santos JF; Couceiro R; Concheiro A; Torres-Labandeira JJ; Alvarez-Lorenzo C
    Acta Biomater; 2008 May; 4(3):745-55. PubMed ID: 18291738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release.
    Wu ZM; Zhang XG; Zheng C; Li CX; Zhang SM; Dong RN; Yu DM
    Eur J Pharm Sci; 2009 Jun; 37(3-4):198-206. PubMed ID: 19491006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation.
    Choh SY; Cross D; Wang C
    Biomacromolecules; 2011 Apr; 12(4):1126-36. PubMed ID: 21384907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk-hyaluronan-based composite hydrogels: a novel, securable vehicle for drug delivery.
    Elia R; Newhide DR; Pedevillano PD; Reiss GR; Firpo MA; Hsu EW; Kaplan DL; Prestwich GD; Peattie RA
    J Biomater Appl; 2013 Feb; 27(6):749-62. PubMed ID: 22090427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide).
    Tavsanli B; Can V; Okay O
    Soft Matter; 2015 Nov; 11(43):8517-24. PubMed ID: 26376837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.