These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 25492013)
41. An efficient and highly versatile synthetic route to prepare iron oxide nanoparticles/nanocomposites with tunable morphologies. Karagoz B; Yeow J; Esser L; Prakash SM; Kuchel RP; Davis TP; Boyer C Langmuir; 2014 Sep; 30(34):10493-502. PubMed ID: 25137176 [TBL] [Abstract][Full Text] [Related]
42. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Wang L; Bao J; Wang L; Zhang F; Li Y Chemistry; 2006 Aug; 12(24):6341-7. PubMed ID: 16741906 [TBL] [Abstract][Full Text] [Related]
43. In situ synthesis of magnetite nanoparticles in carrageenan gels. Daniel-da-Silva AL; Trindade T; Goodfellow BJ; Costa BF; Correia RN; Gil AM Biomacromolecules; 2007 Aug; 8(8):2350-7. PubMed ID: 17625907 [TBL] [Abstract][Full Text] [Related]
44. Synthesis, characterization and stability of a luteinizing hormone-releasing hormone (LHRH)-functionalized poly(amidoamine) dendrimer conjugate. Bi X; Shi X; Baker JR J Biomater Sci Polym Ed; 2008; 19(1):131-42. PubMed ID: 18177559 [TBL] [Abstract][Full Text] [Related]
45. [Spectroscopy study of the immobilized cellulase of magnetic nanoparticles Fe3O4]. Wang M; Song F; Wang SL; Wu QS Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):895-8. PubMed ID: 16883863 [TBL] [Abstract][Full Text] [Related]
46. Comparative ecotoxicity assessment of magnetosomes and magnetite nanoparticles. Raguraman V; Suthindhiran K Int J Environ Health Res; 2020 Feb; 30(1):13-25. PubMed ID: 30714827 [TBL] [Abstract][Full Text] [Related]
47. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Jafari T; Simchi A; Khakpash N J Colloid Interface Sci; 2010 May; 345(1):64-71. PubMed ID: 20153479 [TBL] [Abstract][Full Text] [Related]
48. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Sankar R; Manikandan P; Malarvizhi V; Fathima T; Shivashangari KS; Ravikumar V Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():746-50. PubMed ID: 24388701 [TBL] [Abstract][Full Text] [Related]
49. Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. Shen JM; Yin T; Tian XZ; Gao FY; Xu S ACS Appl Mater Interfaces; 2013 Aug; 5(15):7014-24. PubMed ID: 23815399 [TBL] [Abstract][Full Text] [Related]
50. Simulation and experimental results of optical and thermal modeling of gold nanoshells. Ghazanfari L; Khosroshahi ME Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():185-91. PubMed ID: 25063109 [TBL] [Abstract][Full Text] [Related]
51. Chemical signature of magnetotactic bacteria. Amor M; Busigny V; Durand-Dubief M; Tharaud M; Ona-Nguema G; Gélabert A; Alphandéry E; Menguy N; Benedetti MF; Chebbi I; Guyot F Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1699-703. PubMed ID: 25624469 [TBL] [Abstract][Full Text] [Related]
52. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Sarkar J; Ray S; Chattopadhyay D; Laskar A; Acharya K Bioprocess Biosyst Eng; 2012 May; 35(4):637-43. PubMed ID: 22009439 [TBL] [Abstract][Full Text] [Related]
53. Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions. Yang S; Liu H; Zhang Z Langmuir; 2008 Sep; 24(18):10395-401. PubMed ID: 18715023 [TBL] [Abstract][Full Text] [Related]
54. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Marins JA; Soares BG; Barud HS; Ribeiro SJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3994-4001. PubMed ID: 23910306 [TBL] [Abstract][Full Text] [Related]
55. Modulation of synthetic parameters of novel zinc nanoparticles and reducing agent: powder X-ray diffraction, transmission electron microscopy and spectral studies. Chandra S; Kumar A Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():935-41. PubMed ID: 22906970 [TBL] [Abstract][Full Text] [Related]
56. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Rathi Sre PR; Reka M; Poovazhagi R; Arul Kumar M; Murugesan K Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():1137-44. PubMed ID: 25189525 [TBL] [Abstract][Full Text] [Related]
57. Single crystalline superstructured stable single domain magnetite nanoparticles. Reichel V; Kovács A; Kumari M; Bereczk-Tompa É; Schneck E; Diehle P; Pósfai M; Hirt AM; Duchamp M; Dunin-Borkowski RE; Faivre D Sci Rep; 2017 Mar; 7():45484. PubMed ID: 28358051 [TBL] [Abstract][Full Text] [Related]
58. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Gopinath V; MubarakAli D; Priyadarshini S; Priyadharsshini NM; Thajuddin N; Velusamy P Colloids Surf B Biointerfaces; 2012 Aug; 96():69-74. PubMed ID: 22521683 [TBL] [Abstract][Full Text] [Related]