These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 25492166)
1. Gelatin yarns inspired by tendons--structural and mechanical perspectives. Selle HK; Bar-On B; Marom G; Wagner HD Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():1-7. PubMed ID: 25492166 [TBL] [Abstract][Full Text] [Related]
2. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin. Stoessel PR; Krebs U; Hufenus R; Halbeisen M; Zeltner M; Grass RN; Stark WJ Biomacromolecules; 2015 Jul; 16(7):1997-2005. PubMed ID: 26035474 [TBL] [Abstract][Full Text] [Related]
3. The Power of Fiber Twist. Zhou X; Fang S; Leng X; Liu Z; Baughman RH Acc Chem Res; 2021 Jun; 54(11):2624-2636. PubMed ID: 33982565 [TBL] [Abstract][Full Text] [Related]
4. Investigating the effect of different filaments and yarn structures on mechanical and physical properties of dual-core elastane composite yarns. Irfan M; Qadir MB; Afzal A; Shaker K; Salman SM; Majeed N; Indrie L; Albu A Heliyon; 2023 Sep; 9(9):e20007. PubMed ID: 37809450 [TBL] [Abstract][Full Text] [Related]
8. [Failure conditions of glass filament yarns: a contribution to the valuation of carcinogenic potentials of fiber fragments]. Oser M; Ramseyer C; Mayer J; Wintermantel E Zentralbl Hyg Umweltmed; 1998 Sep; 201(3):251-67. PubMed ID: 9789360 [TBL] [Abstract][Full Text] [Related]
9. A viscoelastic-plastic model for the core of various close-packings of multifilament polyamide-6 yarns. Razbin M; Salehian M; Gharehaghaji AA Sci Rep; 2024 Oct; 14(1):23800. PubMed ID: 39394232 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and Mechanical Performance of Non-Crimp Unidirectional Jute-Yarn Preform-Based Composites. Ali Y; Faisal A; Saifullah A; Dhakal HN; Alimuzzaman S; Sarker F Molecules; 2021 Nov; 26(21):. PubMed ID: 34771071 [TBL] [Abstract][Full Text] [Related]
11. Structures and Properties of Polyacrylonitrile/Graphene Composite Nanofiber Yarns Prepared by Multi-Needle Electrospinning Device with an Auxiliary Electrode. Yan T; Pan ZJ J Nanosci Nanotechnol; 2018 Jun; 18(6):4255-4263. PubMed ID: 29442771 [TBL] [Abstract][Full Text] [Related]
12. Highly twisted double-helix carbon nanotube yarns. Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799 [TBL] [Abstract][Full Text] [Related]
13. High-performance coils and yarns of polymeric piezoelectric nanofibers. Baniasadi M; Huang J; Xu Z; Moreno S; Yang X; Chang J; Quevedo-Lopez MA; Naraghi M; Minary-Jolandan M ACS Appl Mater Interfaces; 2015 Mar; 7(9):5358-66. PubMed ID: 25691363 [TBL] [Abstract][Full Text] [Related]
14. A predictive model of the tensile strength of twisted carbon nanotube yarns. Jeon SY; Jang J; Koo BW; Kim YW; Yu WR Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138 [TBL] [Abstract][Full Text] [Related]
15. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208 [TBL] [Abstract][Full Text] [Related]
16. Automatic Modeller of Textile Yarns at Fibre Level. Aychilie DB; Kyosev Y; Abtew MA Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556693 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotube and graphene multiple-thread yarns. Zhong X; Wang R; Yangyang W; Yali L Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393 [TBL] [Abstract][Full Text] [Related]