These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25492172)

  • 1. Bacterial cellulose gels with high mechanical strength.
    Numata Y; Sakata T; Furukawa H; Tajima K
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():57-62. PubMed ID: 25492172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanical characterization of bacterial cellulose-polyethylene glycol diacrylate composite gels.
    Numata Y; Kono H; Tsuji M; Tajima K
    Carbohydr Polym; 2017 Oct; 173():67-76. PubMed ID: 28732912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-strength cellulose/poly(ethylene glycol) gels.
    Liang S; Wu J; Tian H; Zhang L; Xu J
    ChemSusChem; 2008; 1(6):558-63. PubMed ID: 18702155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.
    Iqbal HM; Kyazze G; Tron T; Keshavarz T
    Carbohydr Polym; 2014 Nov; 113():131-7. PubMed ID: 25256467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.
    Gadim TD; Figueiredo AG; Rosero-Navarro NC; Vilela C; Gamelas JA; Barros-Timmons A; Neto CP; Silvestre AJ; Freire CS; Figueiredo FM
    ACS Appl Mater Interfaces; 2014 May; 6(10):7864-75. PubMed ID: 24731218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-borne, in situ crosslinked biomaterials from phase-segregated precursors.
    Vernon B; Tirelli N; Bächi T; Haldimann D; Hubbell JA
    J Biomed Mater Res A; 2003 Mar; 64(3):447-56. PubMed ID: 12579558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cellulose as a potential meniscus implant.
    Bodin A; Concaro S; Brittberg M; Gatenholm P
    J Tissue Eng Regen Med; 2007; 1(5):406-8. PubMed ID: 18038435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material.
    Zhang X; Yang D; Nie J
    Int J Biol Macromol; 2008 Dec; 43(5):456-62. PubMed ID: 18809431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic in situ mechanical testing of photopolymerized gels.
    Duprat C; Berthet H; Wexler JS; du Roure O; Lindner A
    Lab Chip; 2015 Jan; 15(1):244-52. PubMed ID: 25360871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microporous bacterial cellulose as a potential scaffold for bone regeneration.
    Zaborowska M; Bodin A; Bäckdahl H; Popp J; Goldstein A; Gatenholm P
    Acta Biomater; 2010 Jul; 6(7):2540-7. PubMed ID: 20060935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.
    Pollock JF; Healy KE
    Acta Biomater; 2010 Apr; 6(4):1307-18. PubMed ID: 19941981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites.
    Tajeddin B; Rahman RA; Abdulah LC
    Int J Biol Macromol; 2010 Aug; 47(2):292-7. PubMed ID: 20417660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-polymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA).
    Ma G; Zhang X; Han J; Song G; Nie J
    Int J Biol Macromol; 2009 Dec; 45(5):499-503. PubMed ID: 19720075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro characteristics of a gelling PEGDA-QT polymer system with model drug release for cerebral aneurysm embolization.
    Soodak KF; Brennecka CR; Vernon BL
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1477-88. PubMed ID: 24591225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration.
    An SJ; Lee SH; Huh JB; Jeong SI; Park JS; Gwon HJ; Kang ES; Jeong CM; Lim YM
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29068426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.