BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25492406)

  • 21. Prediction of disulfide connectivity from protein sequences.
    Chen YC; Hwang JK
    Proteins; 2005 Nov; 61(3):507-12. PubMed ID: 16170781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DiANNA: a web server for disulfide connectivity prediction.
    Ferrè F; Clote P
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W230-2. PubMed ID: 15980459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inter- and intra-chain disulfide bond prediction based on optimal feature selection.
    Niu S; Huang T; Feng KY; He Z; Cui W; Gu L; Li H; Cai YD; Li Y
    Protein Pept Lett; 2013 Mar; 20(3):324-35. PubMed ID: 22591475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disulfide connectivity prediction using secondary structure information and diresidue frequencies.
    Ferrè F; Clote P
    Bioinformatics; 2005 May; 21(10):2336-46. PubMed ID: 15741247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins.
    Fariselli P; Riccobelli P; Casadio R
    Proteins; 1999 Aug; 36(3):340-6. PubMed ID: 10409827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinformatics approaches for disulfide connectivity prediction.
    Tsai CH; Chan CH; Chen BJ; Kao CY; Liu HL; Hsu JP
    Curr Protein Pept Sci; 2007 Jun; 8(3):243-60. PubMed ID: 17584119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.
    Lakbub JC; Shipman JT; Desaire H
    Anal Bioanal Chem; 2018 Apr; 410(10):2467-2484. PubMed ID: 29256076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local Similarity Matrix for Cysteine Disulfide Connectivity Prediction from Protein Sequences.
    Mapes NJ; Rodriguez C; Chowriappa P; Dua S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1276-1289. PubMed ID: 30640622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure.
    Kreisberg R; Buchner V; Arad D
    Protein Sci; 1995 Nov; 4(11):2405-10. PubMed ID: 8563638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-based approach to the prediction of disulfide bonds in proteins.
    Salam NK; Adzhigirey M; Sherman W; Pearlman DA
    Protein Eng Des Sel; 2014 Oct; 27(10):365-74. PubMed ID: 24817698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One short cysteine-rich sequence pattern - two different disulfide-bonded structures - a molecular dynamics simulation study.
    Dames SA
    J Pept Sci; 2015 Jun; 21(6):480-94. PubMed ID: 25781269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.
    Becker J; Maes F; Wehenkel L
    PLoS One; 2013; 8(2):e56621. PubMed ID: 23533562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of reversible disulfide based on features from local structural signatures.
    Sun MA; Wang Y; Zhang Q; Xia Y; Ge W; Guo D
    BMC Genomics; 2017 Apr; 18(1):279. PubMed ID: 28376774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the disulfide bonding state of cysteines using protein descriptors.
    Mucchielli-Giorgi MH; Hazout S; Tufféry P
    Proteins; 2002 Feb; 46(3):243-9. PubMed ID: 11835499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the Evolutionary Conservation of Protein Disulphide Bonds.
    Wong JWH
    Methods Mol Biol; 2019; 1967():9-19. PubMed ID: 31069762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HSEpred: predict half-sphere exposure from protein sequences.
    Song J; Tan H; Takemoto K; Akutsu T
    Bioinformatics; 2008 Jul; 24(13):1489-97. PubMed ID: 18467349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.