These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25492709)

  • 21. A protein-dependent side-chain rotamer library.
    Bhuyan MS; Gao X
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S10. PubMed ID: 22373394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dead-end elimination with backbone flexibility.
    Georgiev I; Donald BR
    Bioinformatics; 2007 Jul; 23(13):i185-94. PubMed ID: 17646295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Full-sequence computational design and solution structure of a thermostable protein variant.
    Shah PS; Hom GK; Ross SA; Lassila JK; Crowhurst KA; Mayo SL
    J Mol Biol; 2007 Sep; 372(1):1-6. PubMed ID: 17628593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo protein design. I. In search of stability and specificity.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of CASP7 predictions in the high accuracy template-based modeling category.
    Read RJ; Chavali G
    Proteins; 2007; 69 Suppl 8():27-37. PubMed ID: 17894351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design.
    Georgiev I; Lilien RH; Donald BR
    Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles.
    Georgiev I; Lilien RH; Donald BR
    J Comput Chem; 2008 Jul; 29(10):1527-42. PubMed ID: 18293294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural comparison of the unstable drkN SH3 domain and a stable mutant.
    Bezsonova I; Singer A; Choy WY; Tollinger M; Forman-Kay JD
    Biochemistry; 2005 Nov; 44(47):15550-60. PubMed ID: 16300404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability and folding kinetics of a ubiquitin mutant with a strong propensity for nonnative beta-hairpin conformation in the unfolded state.
    Platt GW; Simpson SA; Layfield R; Searle MS
    Biochemistry; 2003 Nov; 42(46):13762-71. PubMed ID: 14622023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variable Neighborhood Search with Cost Function Networks To Solve Large Computational Protein Design Problems.
    Charpentier A; Mignon D; Barbe S; Cortes J; Schiex T; Simonson T; Allouche D
    J Chem Inf Model; 2019 Jan; 59(1):127-136. PubMed ID: 30380857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
    Sauvé S; Tremblay L; Lavigne P
    J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High accuracy template based modeling by global optimization.
    Joo K; Lee J; Lee S; Seo JH; Lee SJ; Lee J
    Proteins; 2007; 69 Suppl 8():83-9. PubMed ID: 17894332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.
    Peterson RW; Nicholson EM; Thapar R; Klevit RE; Scholtz JM
    J Mol Biol; 1999 Mar; 286(5):1609-19. PubMed ID: 10064718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta-turn propensities as paradigms for the analysis of structural motifs to engineer protein stability.
    Ohage EC; Graml W; Walter MM; Steinbacher S; Steipe B
    Protein Sci; 1997 Jan; 6(1):233-41. PubMed ID: 9007995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antibody side chain conformations are position-dependent.
    Leem J; Georges G; Shi J; Deane CM
    Proteins; 2018 Apr; 86(4):383-392. PubMed ID: 29318667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool.
    Bower MJ; Cohen FE; Dunbrack RL
    J Mol Biol; 1997 Apr; 267(5):1268-82. PubMed ID: 9150411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search.
    Wilson C; Gregoret LM; Agard DA
    J Mol Biol; 1993 Feb; 229(4):996-1006. PubMed ID: 8445659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.