These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A. Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425 [TBL] [Abstract][Full Text] [Related]
6. Structure, function, and mechanism of proline utilization A (PutA). Liu LK; Becker DF; Tanner JJ Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849 [TBL] [Abstract][Full Text] [Related]
7. Structural determinants of oligomerization of δ(1)-pyrroline-5-carboxylate dehydrogenase: identification of a hexamerization hot spot. Luo M; Singh RK; Tanner JJ J Mol Biol; 2013 Sep; 425(17):3106-20. PubMed ID: 23747974 [TBL] [Abstract][Full Text] [Related]
8. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling. Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435 [TBL] [Abstract][Full Text] [Related]
11. Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation. Yao Z; Zou C; Zhou H; Wang J; Lu L; Li Y; Chen B PLoS One; 2013; 8(9):e73483. PubMed ID: 24039956 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum. Srivastava D; Schuermann JP; White TA; Krishnan N; Sanyal N; Hura GL; Tan A; Henzl MT; Becker DF; Tanner JJ Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2878-83. PubMed ID: 20133651 [TBL] [Abstract][Full Text] [Related]
13. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803 [TBL] [Abstract][Full Text] [Related]
14. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. Korasick DA; Gamage TT; Christgen S; Stiers KM; Beamer LJ; Henzl MT; Becker DF; Tanner JJ J Biol Chem; 2017 Jun; 292(23):9652-9665. PubMed ID: 28420730 [TBL] [Abstract][Full Text] [Related]
16. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Cecchini NM; Monteoliva MI; Alvarez ME Plant Physiol; 2011 Apr; 155(4):1947-59. PubMed ID: 21311034 [TBL] [Abstract][Full Text] [Related]
17. Context of action of proline dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis. Monteoliva MI; Rizzi YS; Cecchini NM; Hajirezaei MR; Alvarez ME BMC Plant Biol; 2014 Jan; 14():21. PubMed ID: 24410747 [TBL] [Abstract][Full Text] [Related]
18. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA). Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758 [TBL] [Abstract][Full Text] [Related]
19. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel. Surber MW; Maloy S Arch Biochem Biophys; 1998 Jun; 354(2):281-7. PubMed ID: 9637737 [TBL] [Abstract][Full Text] [Related]
20. Unique structural features and sequence motifs of proline utilization A (PutA). Singh RK; Tanner JJ Front Biosci (Landmark Ed); 2012 Jan; 17(2):556-68. PubMed ID: 22201760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]