These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 25493313)
1. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. Trachtenberg JE; Mountziaris PM; Miller JS; Wettergreen M; Kasper FK; Mikos AG J Biomed Mater Res A; 2014 Dec; 102(12):4326-35. PubMed ID: 25493313 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
3. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885 [TBL] [Abstract][Full Text] [Related]
4. Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures. Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Clarke SA; Dunne N J Mech Behav Biomed Mater; 2017 Jun; 70():68-83. PubMed ID: 27233445 [TBL] [Abstract][Full Text] [Related]
5. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds. He J; Xia P; Li D Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377 [TBL] [Abstract][Full Text] [Related]
6. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
7. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
8. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Dunne N Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():975-986. PubMed ID: 30274136 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839 [TBL] [Abstract][Full Text] [Related]
10. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds. Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900 [TBL] [Abstract][Full Text] [Related]
11. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry. Olubamiji AD; Izadifar Z; Si JL; Cooper DM; Eames BF; Chen DX Biofabrication; 2016 Jun; 8(2):025020. PubMed ID: 27328736 [TBL] [Abstract][Full Text] [Related]
12. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X; Du X; Li D; Ao R; Yu B; Yu B J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of biomimetic bone grafts with multi-material 3D printing. Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207 [TBL] [Abstract][Full Text] [Related]
14. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172 [TBL] [Abstract][Full Text] [Related]
15. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Zhou Z; Buchanan F; Mitchell C; Dunne N Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346 [TBL] [Abstract][Full Text] [Related]
16. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098 [TBL] [Abstract][Full Text] [Related]
19. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering. Jonnalagadda JB; Rivero IV J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523 [TBL] [Abstract][Full Text] [Related]
20. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties. Ansari MAA; Jain PK; Nanda HS J Biomater Sci Polym Ed; 2023 Aug; 34(10):1408-1429. PubMed ID: 36628582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]