BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25493509)

  • 1. Real-time simulator for designing electron dual scattering foil systems.
    Carver RL; Hogstrom KR; Price MJ; LeBlanc JD; Pitcher GM
    J Appl Clin Med Phys; 2014 Nov; 15(6):4849. PubMed ID: 25493509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.
    Carver R; Hogstrom K; Price M; Leblanc J; Harris G
    Med Phys; 2012 Jun; 39(6Part9):3708. PubMed ID: 28519026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.
    Ronga MG; Deut U; Bonfrate A; De Marzi L
    Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation leakage dose from Elekta electron collimation system.
    Pitcher GM; Hogstrom KR; Carver RL
    J Appl Clin Med Phys; 2016 Sep; 17(5):157-176. PubMed ID: 27685101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations.
    Ye SJ; Pareek PN; Spencer S; Duan J; Brezovich IA
    Med Phys; 2005 Jun; 32(6):1460-8. PubMed ID: 16013701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary radiation dose modeling in passive scattering and pencil beam scanning very high energy electron (VHEE) radiation therapy.
    Deut U; Ronga MG; Bonfrate A; De Marzi L
    Med Phys; 2023 Jul; 50(7):4491-4504. PubMed ID: 37227704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The angular and energy distribution of the primary electron beam.
    Keall PJ; Hoban PW
    Australas Phys Eng Sci Med; 1994 Sep; 17(3):116-23. PubMed ID: 7980200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of scattering foil parameters on electron-beam Monte Carlo calculations.
    Bieda MR; Antolak JA; Hogstrom KR
    Med Phys; 2001 Dec; 28(12):2527-34. PubMed ID: 11797957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical Note: Monte Carlo study on the reduction in x-ray contamination of therapeutic electron beams for Intraoperative Radiation Therapy by means of improvements in the design of scattering foils.
    Adrich P
    Med Phys; 2019 Aug; 46(8):3378-3384. PubMed ID: 31173366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.
    Boyd RA; Hogstrom KR; White RA; Antolak JA
    Med Phys; 2002 Nov; 29(11):2571-83. PubMed ID: 12462724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of large electron fields.
    Faddegon B; Schreiber E; Ding X
    Phys Med Biol; 2005 Mar; 50(5):741-53. PubMed ID: 15798251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software.
    Tabor Z; Kabat D; Waligórski MPR
    Radiat Oncol; 2021 Jun; 16(1):124. PubMed ID: 34187495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams.
    Grusell E; Montelius A; Brahme A; Rikner G; Russell K
    Phys Med Biol; 1994 Dec; 39(12):2201-16. PubMed ID: 15551548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of the optimal pretarget electron beam parameters in a Monte Carlo virtual linac model through simulated annealing.
    Bush K; Zavgorodni S; Beckham W
    Med Phys; 2009 Jun; 36(6):2309-19. PubMed ID: 19610319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment head disassembly to improve the accuracy of large electron field simulation.
    Faddegon BA; Sawkey D; O'Shea T; McEwen M; Ross C
    Med Phys; 2009 Oct; 36(10):4577-91. PubMed ID: 19928089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.