These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25493773)

  • 1. Fick-Jacobs equation for channels over three-dimensional curves.
    Valero Valdes C; Herrera Guzman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052141. PubMed ID: 25493773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the covariant description of diffusion in two-dimensional confined environments.
    García-Chung AA; Chacón-Acosta G; Dagdug L
    J Chem Phys; 2015 Feb; 142(6):064105. PubMed ID: 25681885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximations of the generalized Fick-Jacobs equation.
    Kalinay P; Percus JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021103. PubMed ID: 18850782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion in narrow channels on curved manifolds.
    Chacón-Acosta G; Pineda I; Dagdug L
    J Chem Phys; 2013 Dec; 139(21):214115. PubMed ID: 24320372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrections to the Fick-Jacobs equation.
    Kalinay P; Percus JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041203. PubMed ID: 17155047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion in the presence of cylindrical obstacles arranged in a square lattice analyzed with generalized Fick-Jacobs equation.
    Dagdug L; Vazquez MV; Berezhkovskii AM; Zitserman VY; Bezrukov SM
    J Chem Phys; 2012 May; 136(20):204106. PubMed ID: 22667539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projection of two-dimensional diffusion in a curved midline and narrow varying width channel onto the longitudinal dimension.
    Dagdug L; Pineda I
    J Chem Phys; 2012 Jul; 137(2):024107. PubMed ID: 22803528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion in two-dimensional conical varying width channels: comparison of analytical and numerical results.
    Pineda I; Alvarez-Ramirez J; Dagdug L
    J Chem Phys; 2012 Nov; 137(17):174103. PubMed ID: 23145713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropic particle transport: higher-order corrections to the Fick-Jacobs diffusion equation.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051135. PubMed ID: 21728518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion in a two-dimensional channel with curved midline and varying width: reduction to an effective one-dimensional description.
    Bradley RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061142. PubMed ID: 20365153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended Fick-Jacobs equation: variational approach.
    Kalinay P; Percus JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061203. PubMed ID: 16485939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral formula for the effective diffusion coefficient in two-dimensional channels.
    Kalinay P
    Phys Rev E; 2016 Jul; 94(1-1):012102. PubMed ID: 27575072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When is the next extending of Fick-Jacobs equation necessary?
    Kalinay P
    J Chem Phys; 2013 Aug; 139(5):054116. PubMed ID: 23927252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensional reduction of a general advection-diffusion equation in 2D channels.
    Kalinay P; Slanina F
    J Phys Condens Matter; 2018 Jun; 30(24):244002. PubMed ID: 29708500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current of interacting particles inside a channel of exponential cavities: Application of a modified Fick-Jacobs equation.
    Suárez G; Hoyuelos M; Mártin H
    Phys Rev E; 2016 Jun; 93(6):062129. PubMed ID: 27415230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion in a tube of varying cross section: numerical study of reduction to effective one-dimensional description.
    Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    J Chem Phys; 2007 Apr; 126(13):134706. PubMed ID: 17430055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biased diffusion in confined media: test of the Fick-Jacobs approximation and validity criteria.
    Burada PS; Schmid G; Reguera D; Rubí JM; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051111. PubMed ID: 17677026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective one-dimensional description of confined diffusion biased by a transverse gravitational force.
    Kalinay P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011118. PubMed ID: 21867124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of forced diffusion in quasi-one-dimensional systems.
    Kalinay P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031106. PubMed ID: 19905061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing corrections to the Fick-Jacobs equation.
    Dorfman KD; Yariv E
    J Chem Phys; 2014 Jul; 141(4):044118. PubMed ID: 25084892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.