These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 25493803)
1. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots. Diemand J; Angélil R; Tanaka KK; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory. Baidakov VG J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990 [TBL] [Abstract][Full Text] [Related]
8. Free energy of cluster formation and a new scaling relation for the nucleation rate. Tanaka KK; Diemand J; Angélil R; Tanaka H J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures. Baidakov VG; Bobrov KS J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules. Tanaka KK; Tanaka H; Yamamoto T; Kawamura K J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446 [TBL] [Abstract][Full Text] [Related]
11. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. Tanaka KK; Kawamura K; Tanaka H; Nakazawa K J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736 [TBL] [Abstract][Full Text] [Related]
12. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation. Napari I; Julin J; Vehkamäki H J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of bubble nucleation in dark matter detectors. Denzel P; Diemand J; Angélil R Phys Rev E; 2016 Jan; 93(1):013301. PubMed ID: 26871185 [TBL] [Abstract][Full Text] [Related]
15. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory. Chen B; Kim H; Keasler SJ; Nellas RB J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920 [TBL] [Abstract][Full Text] [Related]
16. Homogeneous SPC/E water nucleation in large molecular dynamics simulations. Angélil R; Diemand J; Tanaka KK; Tanaka H J Chem Phys; 2015 Aug; 143(6):064507. PubMed ID: 26277145 [TBL] [Abstract][Full Text] [Related]
17. Performance of some nucleation theories with a nonsharp droplet-vapor interface. Napari I; Julin J; Vehkamäki H J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399 [TBL] [Abstract][Full Text] [Related]
18. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories. Julin J; Napari I; Merikanto J; Vehkamäki H J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537 [TBL] [Abstract][Full Text] [Related]
19. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica. Saika-Voivod I; Poole PH; Bowles RK J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303 [TBL] [Abstract][Full Text] [Related]